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DRAFT
Chapter 1

The distances

1.1 Introduction

The main goal of this paper is to gather results in the literature, and make some enhancements,
on the null distributions of popular distance measures for ranking data. Diaconis (1988) has
a thorough discussion of rank distances. See also Marden (1996).

We present methods for calculating the exact distributions for small values of m, the num-
ber of objects ranked, and asymptotic or other approximations for larger m. Implementations
are found in the R package rankeeze. The null distributions are used for testing uniformity of
the rank vectors, as well as the basis for the Mallows’ parametric models.

As noted, we have m objects to rank. A rank vector is an m-dimensional vector y =
(y1, . . . ,ym), where yi denotes the rank of object i. We do not allow ties or missing values, so
that each y ∈ Pm, where Pm the set of permutations of the integers from 1 to m. By the null
distribution on the random vector Y , we mean that Y is uniformly distributed over the set of
permutations,

Y ∼ Uniform(Pm). (1.1)

Given a distance d(y,x) for y,x ∈ Pm, we wish to find the distribution of d(Y ,x) for Y as in
(1.1). All the distances we consider are label-invariant, meaning the order in which the objects
are numbered is irrelevant. Formally, if Q is any m×m permutation matrix (there is exactly
one 1 in each row and each column), then d is label-invariant if d(yQ,xQ) = d(y,x) for all
y,x ∈ Pm. This property can be shown to imply that the distribution of d(Y ,x) under (1.1)
does not depend on x ∈ Pm. In fact, the distribution is the same even if X has a distribution,
as long as it is independent of Y . Thus it is enough to consider the distribution of

D ≡ d(Y ,ω), where ω = (1, 2, . . . ,m). (1.2)

By the uniformity, we have

P[D = x] =
#{y ∈ Pm |d(y,ω) = x}

m!
. (1.3)

A couple of the distances are also rank-invariant, hence are bi-invariant. See Section 1.7.

1
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1.2 The distances
We have results on the seven popular distances d(y,x) listed in (1.4). There are many others,
but these seem to cover the gamut quite well.

Name Definition

Spearman
∑

(yi − xi)
2

Footrule
∑

|yi − xi|
Kendall #{1 6 i < j 6 m | (yi − yj)(xi − xj) < 0}
Hamming #{i |yi 6= xi}
Cayley m− #Cycles
Ulam m− Length of longest increasing subsequence
Maximum max{|xi − yi|}

(1.4)

The Spearman distance is also known as Spearman’s ρ distance, since it is related to that cor-
relation coefficient (see Section 1.5), and the footrule is known as Spearman’s footrule. See
Spearman (1904). Likewise, Kendall’s distance is related to Kendall’s τ coefficient (M. G. Kendall,
1938). The maximum distance could also be called Chebyshev’s distance.

The Cayley and Ulam distances need a little more explanation. First, suppose x = ω. A
cycle is a set of distinct integers c1, . . . , cK arranged in a cycle

c1 → c2 → c3 → · · · → cK → c1, (1.5)

where the beginning is arbitrary, i.e., (c2 → c3 → · · · → cK → c1 → c2) is the same cycle. The
permutation has the cycle (1.5) if for some i,

yc1 = c2,yc2 = c3, . . . ,ycK−1 = cK and ycK = c1. (1.6)

So if y = (3, 5, 2, 7, 1, 4, 6), the cycles are (3 → 2 → 5 → 1 → 3) and (7 → 6 → 4 → 7). Each
y has a unique decomposition into cycles, and each yi appears in exactly one of the cycles.
Cayley’s distance subtracts the number of cycles from m, so that in this case dCayley(y,ω) =
7 − 2 = 5. Note that ω = (1, 2, . . . ,m) has m cycles of one, (1 → 1), (2 → 2), etc, so that
dCayley(ω,ω) = 0. This distance can also be defined as the minimum number of interchanges
to bring y to ω. E.g.,

y = (3, 5, 2, 7, 1, 4, 6)→ (1, 5, 2, 7, 3, 4, 6)→ (1, 2, 5, 7, 3, 4, 6)→ (1.7)
(1, 2, 3, 7, 5, 4, 6)→ (1, 2, 3, 4, 5, 7, 6)→ (1, 2, 3, 4, 5, 6, 7), (1.8)

which is indeed 5 interchanges. Kendall’s distance is the minimum number of adjacent inter-
changes needed to bring y to ω.

An increasing subsequence in y is a subsequence i1 < i2 < · · · < iK such that yi1 < yi2 <
· · · < yiK . Ulam’s distance is dUlam(y,ω) = m− Lm, where Lm is defined to be the longest
such subsequence. For y = (3, 5, 2, 7, 1, 4, 6), the longest is Lm = 3. In fact, there are four
subsequences of length three: (3,5,7), (3,4,6), (2,4,6), and (1,4,6). Thus dUlam(y,ω) = 7 − 3 = 4.

To define the Ulam and Cayley distances for arbitrary x, we first reorder y and x in concert
until x → ω and y → y∗. Then d(y,x) = d(y∗,ω). Formally, we find the permutation matrix
Q for which xQ = ω, and define y∗ = yQ.

As mentioned above, all these distances are label-invariant. The Hamming and Cayley
distances are also rank-invariant, hence bi-invariant.
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1.3 Summary of results
For any distance, it is possible to find the density (1.3) by directly summing over all y ∈ Pm.
Since there are m! elements in Pm, this approach is practical only for fairly small m, say
m 6 10 (depending on the speed of your computer and available time). Fortunately, there
are short-cuts that allow us to find the exact distributions for values of m 6 m∗ for m∗ >
10. When m > m∗, approximate and asymptotic results are available. The m∗ for which
the rankeeze package has exact values is given in the table in (1.9), along with approximate
and/or asymptotic distributions used for larger m. (“Edgeworth” means using an Edgeworth
expansion of the normal.)

Name m∗ Approximating distribution Asymptotic distribution

Spearman 24 Edgeworth Normal
Footrule 350 Edgeworth Normal
Kendall 1, 000 Edgeworth Normal
Hamming 25 Poisson Poisson
Cayley 10, 000 Edgeworth Normal
Ulam 150 Gamma Tracy-Widom
Maximum 24 See Section 10.4

√
Exponential

(1.9)

For the Spearman, footrule, Ulam, and maximum distances, the smallish m∗ are due to the
limits of computational power. For the others, we could push up m∗, but the approximations
work well even for m ≈ m∗. In each case, the approximate or asymptotic distribution are
based on scaled and shifted versions of the distances. Table 1.10 gathers together the first two
moments of the distances, though we have only approximations for the Ulam and maximum
distances, which are not especially accurate for small m. We also include the maximum value
of the distances. For references and more details, see the specific chapters devoted to each
distance. Note that for any distance, the variance is zero if m = 1.

Maximum Mean Variance (if m > 1)

Spearman m(m2 − 1)/3 m(m2 − 1)/6 m2(m− 1)(m+ 1)2/36
Footrule bm2/2c (m2 − 1)/3 (m+ 1)(2m2 + 7)/45
Kendall m(m− 1)/2 m(m− 1)/4 m(m− 1)(2m+ 5)/72
Hamming m m− 1 1
Cayley m− 1 m−

∑m
i=1 1/i

∑m
i=1(i− 1)/i2

Ulam m− 1 m− 2
√
m−m1/6E[W]∗ m1/3Var[W]∗

Maximum m− 1 m−
√
mπ/2∗ m(1 − π/4)∗

∗ = Asymptotic approximation

(1.10)

Here W is a Tracy-Widom random variable (Tracy & Widom, 1994), which we discuss fur-
ther in Section 8.4. The first two moments are approximately E[W] ≈ −1.7711 and Var[W] ≈
0.8132. Higher moments, and cumulants, which are needed in the Edgeworth expansions, are
given in the individual chapters.
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1.4 Practical support

The decision of which distance(s) to use can depend on a number of factors. If the scientific
situation dictates a particular distance, then that is the one to use. In hypothesis testing, one
would choose a distance for which the test based on it has good power, which would also
depend on the particular situation. One feature that may be important based on just the null
distribution is the size of the support. The more values a distance can take on, the better one
can distinguish between rank vectors. Thus, e.g., we can find confidence percentages closer to
95%, or type I errors closer to 5% or 1%, or finer distinctions between p-values.

Table (1.10) indicates the maximum value each distance can take on. In each case, the
minimum is 0, and all distances are integers, but the two Spearman distances have support
on just the even integers, while the others have support on all integers from the minimum to
the maximum. From the table we can see that Spearman’s ρ distance has by far the largest
support, of order m3, at least for medium to large m. The footrule and Kendall’s distances
have fairly large support, too, but of order m2. The others’ support is just m or m− 1.

Perhaps more important is the practical support, i.e., the number of values the distance is
likely to take on. In table (1.11), we find the minimum number of support values for which
the total probability is at least 99.9%.

m→ 10 25 50 100 Asymptotically

Spearman 147 1633 9485 54276 0.55×m5/2

Footrule 20 85 243 690 0.69×m3/2

Kendall 34 137 388 1098 1.10×m3/2

Hamming 6 6 6 6 6
Cayley 7 9 11 12 6.58×

√
log(m)

Ulam 6 8 9 12 5.96×m1/6

Maximum 7 12 17 24 2.63×
√
m

(1.11)

Here we see that the Spearman,footrule and Kendall distances have practical support that
grows reasonably fast, especially Spearman’s. The Hamming distance’s practical support
does not grow at all, being stuck at 6. The others’ grow quite slowly, the maximum distance’s
growing fastest of those three at a

√
m rate.

1.5 Correlation-coefficient-like rescaling

Our main objective in studying distances is to aid in analyzing and modeling rank data. The
original impetus for many of the distances was to find non-parametric alternatives to the usual
product-moment correlation coefficient used for continuous data. See Spearman (1904) and
M. G. Kendall & Gibbons (1990) for historical context.

For 1×N vectors w and z, their product moment correlation can be defined by

r(w, z) =
wz ′

‖w‖ ‖z‖
. (1.12)
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For continuous data vectors x and y, the sample correlation coefficient is r with wi = xi − x
and zi = yi − y, the centered versions of the vectors. It ranges from −1 to +1, indicating the
degree to which the two variables are linearly related: +1 indicates they are perfectly posi-
tively linearly related (yi = a+ bxi for some b > 1), −1 means they are perfectly negatively
linearly related (so b < 0), and zero indicates no linear relationship.

Spearman’s ρ and Kendall’s τ coefficients are analogs, where the ρ coefficient is the same
as the regular correlation coefficient but with the raw data replaced by ranks. It then measures
the degree of linear relationship in the ranks, which translates to monotone relationship of the
original data. Kendall’s τ uses pairs of indices, so that

wij = Sign(xi − xj) and zij = Sign(yi − yj), 1 6 j < i 6 m, (1.13)

where Sign(a) = −1, 0, or +1 as a < 0,= 0, or > 0. Now w and z are length N =
(
m
2

)
. The

corresponding distances for rank vectors were named from these coefficients, since

ρ(y,x) = 1 −
dSpear(y,x)
E[dSpear(Z,ω)]

= 1 − 2
dSpear(y,x)

Max{dSpear(y∗,ω)}
and

τ(y,x) = 1 −
dKen(y,x)
E[dKen(Z,ω)]

= 1 − 2
dKen(y,x)

Max{dSpear(y∗,ω)}
, (1.14)

where Z ∼ Uniform(Pm) the maxima are taken over y∗ ∈ Pm. Both of these distances are
symmetric, so that their means are half their maxima. Note that the coefficients’ means are
zero.

Because of the nice interpretation of these correlation-like coefficients, it might help to
rescale the other distances similarly. One problem is that none of the others in (1.4) are
symmetric, so that the two rescalings as in (1.14) are not the same. Then either the minimum
of the coefficient will not be −1, or the mean will not be zero. For example, using the footrule
we have that from (1.10),

min
{

1 −
dFoot(y,x)
E[dFoot(Z,ω)]

}
≈ −0.5 and E

[
1 − 2

dFoot(y,x)
Max{dFoot(y∗,ω)}

]
≈ −0.33. (1.15)

I prefer the first choice, presented by Spearman (1904), since having uniformity associated
with “0” seems more important than being able to achieve a “−1” coefficient.

The calculations work out even worse for the other distances, so I don’t believe these rescal-
ings are appropriate. In fact, the distances have nice interpretations on their own, possibly
after subtracting from m. That is, m−dHam(y,x) is the number of matches between the xi’s
and yi’s; m−dUlam(y,x) is the length of the longest increasing subsequence; Cayley’s distance
is the number of interchanges needed to bring y to x; and dMax(y,x) is the maximum differ-
ence between xi and yi. One may wish to divide these alternatives by m, to scale between 0
and 1.

1.6 Correlations among the distances
We also consider the correlations of the distances under the uniform distribution. Chapter 11
calculates the exact covariances among five of the distances (all but Ulam’s and the maximum
distances), and simulates the other correlations. Below are the main take-aways:
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• For small m, the correlations are fairly high, but as m increases, most correlations de-
crease.

• The triad of the Spearman, footrule, and Kendall distances have their inter-correlations
start high, and generally increase, with that between Spearman and Kendall tending to
1, and those between the footrule and the other two tending to 3/

√
10 ≈ 0.95.

• The correlations of the above triad with Ulam’s distance decrease slowly; it is not clear
whether they approach zero, though they appear to decline at a log(m) rate for m up
to 10,000. The correlations of the triad with the remaining (Hamming, Cayley, and
maximum) go to zero, at least seemingly for the maximum.

• The correlation of Hamming’s and Cayley’s distances approaches zero, but very slowly,
at a rate of 1/

√
log(m).

• All other correlations approach zero, at least seemingly for those involving Ulam or the
maximum.

The exact covariances among five of the distances are given in (11.1). The asymptotic
correlations as m→∞ of these distances are given next:

Footrule Kendall Hamming Cayley

Spearman 3√
10
(1 − 1/(4m2)) 1 − 1/(4m) 1/

√
m− 1 1/

√
m log(m)

Footrule 3√
10
(1 − 1/(4m))

√
5/(2m)

√
5/(2m log(m))

Kendall 1/
√
m 1/

√
m log(m)

Hamming 1/
√

log(m)

(1.16)

See Section 11.2 for more calculations.

1.7 Bi-invariance
The distance d is label-invariant as defined in Section 1.1 if d(y,x) is not affected by permu-
tation of the indices of x and y, where the indices in the two vectors are permuted in concert.
E.g., using the permutation 1→ 2, 2→ 4, 3→ 3, 4→ 1 on the indices, we have

d((y1,y2,y3,y4), (x1, x2, x3, x4)) = d((y2,y4,y3,y1), (x2, x4, x3, x1)). (1.17)

The distance is rank-invariant if permuting the actual rank values does not change the dis-
tance. Thus using the same permutation, but on the ranks, d is rank-invariant implies that

d((4, 2, 1, 3), (1, 2, 3, 4)) = d((1, 4, 2, 3), (2, 4, 3, 1)). (1.18)

Formally, let Qm be the set of m×m permutation matrices, and for x ∈ Pm, define the
associated Qx ∈ Qm by

x = ωQx, so that xi = j if Qx,ji = 1. (1.19)
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Writing d(Qy,Qx) = d(y,x), we have that

Label-invariance ⇒ d(Qy,Qx) = d(QyQ∗,QxQ∗) for all Q∗ ∈ Qm;
Rank-invariance ⇒ d(Qy,Qx) = d(QQy,QQx) for all Q ∈ Qm;
Bi-invariance ⇒ d(Qy,Qx) = d(QQyQ∗,QQxQ∗) for all Q,Q∗ ∈ Qm.

(1.20)

The cycle distribution of y ∈ Pm is the 1×m vector γ(y), where

γk(y) = #{Cycles of length k in y}. (1.21)

A distance d is bi-invariant if and only it is label-invariant, and for some function g,

d(y,x) = d(y∗,ω) = g(γ(y∗)), where Qy∗ = QyQ
′
x. (1.22)

Label-invariance yields the first equality. For the second, note first that (1.20) for bi-invariance
with Q∗ = Q ′xQ ′ yields

d(y,x) = d(QQy∗Q ′, I) for all Q ∈ Qm. (1.23)

The operation Qy∗ → QQy∗Q
′ is called a conjugation in algebra. Then (1.22) follows by a

result on conjugation of permutations. See Herstein (1964, pages 75 and 76). Intuitively, the
idea is that a cycle as in (1.5) and (1.6) will still be a cycle upon replacing the ci’s with another
set of distinct integers.

From the characterization (1.22), we see that the Hamming and Cayley distances are bi-
invariant. Hamming’s distance is m minus the number of matches, yk = k, each of which is a
cycle of length one, and Cayley’s distance is just m minus the total number of cycles:

dHamming(y,ω) = m− γ1(y) and dCayley(y,ω) = m−

m∑
k=1

γk(y). (1.24)
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Chapter 2

Moments, cumulants, and Edgeworth
expansions

For some distances, or random variables in general, it is easier to find the moments, and for
some the cumulants, hence it is convenient to be able to calculate one type from the another. In
Section 2.2, we present some general formulas for such conversions, along with Mathematica
and R code.

The Edgeworth expansion is a series of modifications to the normal distribution that, un-
der suitable conditions, provide successively better approximations to the distribution of a
normalized sum of iid random variables. We use it for some of the distances. Even though
they are not sums of iid variables, the expansions do provide very good approximations. In
Section 2.3 we develop the expansion for the iid case when the variables have a density. Our
applications are require an extra adjustment because they are concentrated on a lattice, i.e, the
integers. See Section 2.3.1. Section 2.4 provides some Mathematica code that we use.

2.1 Moment and cumulant generating functions
For random variable X, we consider the following types of moments, where n is a positive
integer:

Raw: µ ′n = E[Xn],
Central: E[(X− µ)n],

Regular: µn =

{
µ ′1 ≡ µ if n = 1
E[(X− µ)n] if n > 1

, and

Factorial: γn = E[(X)n],

(2.1)

where µ = E[X] = µ ′1 and (x)n = x(x− 1) · · · (x− n+ 1), which we see again in (4.18). (Set
µ ′0 = µ0 = γ0 = 1.) We usually call the “regular moments” just “moments,” since they are
what the term typically evokes. The first regular moment is a raw moment, the mean, the
second is a central moment, the variance, and the rest are also central moments (skewness,
kurtosis, etc.).

The raw moments can be found using the moment generating function MX(t) or the char-
acteristic function CX(t) given by

MX(t) = E[e
tX] and CX(t) = C[e

itX], (2.2)

9
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where i is the imaginary unit. The moment generating function is said to exist if it is finite for
t in a neighborhood of zero, in which case we have the expansion

MX(t) =

∞∑
k=0

µ ′k
tk

k!
. (2.3)

The characteristic function always exists, and if the nth moment is finite, then we have

CX(t) =

n∑
k=0

µ ′k
(it)k

k!
+ o(|t|n) (2.4)

Thus under the appropriate conditions (MX(t) exists, or µ ′k is finite), we can obtain the kth

moment via differentiation:
µ ′k =M

(k)
X (0) = −ikC

(k)
X (0). (2.5)

We can generate the central moments by using either M(X−µ)(t) or C(X−µ)(t).
Cumulants are defied via the expansions of the logs of these two functions. That is, if the

moment generating function exists, or µ ′n is finite, then the cumulant generating function is
either

KX(t) = log(MX(t)) =

∞∑
k=1

κk
tk

k!
or

HX(t) = log(CX(t)) =
n∑
k=1

κk
(it)k

k!
+ o(|t|n). (2.6)

In either case, the kth cumulant is the κk in the expansion, and is given by K
(k)
X (0) and

−ikH(k)(0). In particular, κ1 is the mean and κ2 is the variance. The normalized cumu-
lants are the cumulants of the normalized variable (X− µ)/

√
µ2, if the first two moments are

finite. Thus

nth normalized cumulant =


0 if n = 1
1 if n = 2
κn/κ

n/2
2 if n > 3, & κn is finite

. (2.7)

Similarly, the factorial generating function has a real and complex version, but we will
just deal with the former. If the moment generating function exists, so does the factorial
generating function, and equals

FaX(t) = E[(1 + t)X] =

∞∑
k=0

γk
tk

k!
. (2.8)

2.2 Moment conversions
Any one of the sets of the first n (regular) moments, raw moments, cumulants, or factorial
moments can be calculated from any of the other sets. We could also include the set of central
moments if we add µ to that set, which is then the set of regular moments.
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The easiest conversion is to go between raw moments and regular moments. We start by
relating the moments of W and W + c for constant c. Using the binomial expansion, we have

E[(W + c)n] = E

[
n∑
k=0

(
n

k

)
Wkcn−k

]

=

n∑
k=0

(
n

k

)
E[Wk]cn−k. (2.9)

If we know µ ′1, . . . ,µ ′n (and they are finite), then we automatically have µ1 = µ ′1, and for n > 1,
by setting W = X and c = −µ in (2.9), we have

µn = E[(X− µ)n] =

n∑
k=0

(
n

k

)
(−1)n−kµ ′kµ

n−k

= (−1)n(n− 1)µn +
n∑
k=2

(
n

k

)
(−1)n−kµ ′kµ

n−k. (2.10)

Reversing, we set W = X− µ and c = µ, so that for n > 1,

µ ′n =

n∑
k=0

(
n

k

)
µkµ

n−k = (n+ 1)µn +
n∑
k=2

(
n

k

)
µkµ

n−k. (2.11)

To go between raw moments and cumulants or raw moments and factorial moments, we
appeal to a formula of Faà di Bruno (di Bruno, 1855) that deals with Mclaurin expansions
of composite functions. Finding one generating function from another involves expanding a
composite function g(h(t)) in terms of the individual expansions of g and h. Our version is
from Appendix A of Blinnikov & Moessner (1998), proven in Section 2.2.1.

Lemma 2.1. Suppose g(u) can be written as a Maclaurin series. Then

g

(
L∑
l=1

αlε
l

)
= g(0) +

∞∑
n=1

λnε
n, (2.12)

where

λn =
∑
k∈An

g(k
∗)(0)

L∏
l=1
kl>0

1
kl!
α
kl
l

≡
∑
k∈An

g(k
∗)(0)

L∏
l=1

1
kl!
α
kl
l , (if we take 00 = 1), (2.13)

An = {k = (k1, . . . ,kL) |
L∑
l=1

lkl = n, kl are nonnegative integers}, (2.14)

and

k∗ =
L∑
l=1

kl. (2.15)
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In the lemma, we can take L = ∞. Each vector k has only a finite number of positive
entries, so the product in (2.13) has effectively a finite number of components.

To simplify a little, we assume the moment generating function exists, so that we can use
the real versions of the generators. Even if it doesn’t exist, the formulas will be valid for
moments which exist. Start with the raw moments, and consider finding the cumulants. We
write the cumulant generating function as in (2.12) with g(x) = log(1 + x) and the argument
of g being MX(t) − 1 with ε = t, and L =∞. Then (2.12) yields

KX(t) = log

(
1 +

∞∑
l=1

µ ′k
tk

k!

)
= g

( ∞∑
l=1

µ ′k
tk

k!

)

= 0 +

∞∑
n=1

λnt
n. (2.16)

Thus by (2.6), the nth cumulant is n!λn. To use (2.13), we note that αl = µ ′l/l!, and g(i)(0) =
(−1)i−1(i− 1)!. Thus

κn = n!
∑
k∈An

(−1)k
∗−1(k∗ − 1)!

n∏
l=1

1
kl!

(
µ ′l
l!

)kl
. (2.17)

(The product goes only to n, rather than L = ∞, since kl = 0 for l > n when k ∈ An.) This
formula is given in equation (30) of Blinnikov & Moessner (1998).

We can reverse this conversion usingMX(t) = exp(KX(t)). Now g(x) = x, so the derivatives
at x = 0 are all equal to one, and αl = κl/l!. Thus the lemma yields µ ′n = n!λn, or

µ ′n = n!
∑
k∈An

n∏
l=1

1
kl!

(κl
l!

)kl
. (2.18)

Turn to finding the raw moments from the factorial moments. The moment generating
function can be written as a function of the factorial generating function as

MX(t) = E[e
tX] = E[(1 + et − 1)X] = FaX(et − 1) = FaX

( ∞∑
l=1

tl

l!

)
. (2.19)

In this case, g(x) = FaX(x), so g(j)(0) = γj, and αl = 1/l!, hence

µ ′n = n!
∑
k∈An

γk∗

n∏
l=1

1
kl!

(
1
l!

)kl
. (2.20)

Perhaps more familiar to combinatorists, an equivalent formula is

µn =

n∑
k=1

S(n,k)γk, (2.21)
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where S(n,k)’s are Stirling numbers of the second kind. See Weisstein (2018a, equation 11).
The other way, we have

FaX(t) = E[(1 + t)X] = E[elog(1+t)X] =MX(log(1 + t)) =MX

( ∞∑
l=1

(−1)l−1 t
l

l

)
. (2.22)

Now g(i)(0) = µ ′i and αl = (−1)l−1/l, so that

γn = n!
∑
k∈An

µ ′k∗

n∏
l=1

1
kl!

(
(−1)l−1

l

)kl
. (2.23)

Converting between the regular moments and factorial moments does not appear to have
a simple direct answer, so that it may be best to go through the raw moments (e.g., factorial
moments → raw moments → regular moments). Converting between regular moments and
cumulants is almost the same as with raw moments. The nth cumulants for n > 2 are shift-
invariant, i.e., the nth cumulant of X is the same as that of X+ c for any c. Thus to find the
cumulants from the regular moments, we set κ1 = µ1, and for n > 2, use the set of central
moments (i.e., the first is 0, the rest are µn) in place of the µ ′n in (2.17). To find the regular
moments from the cumulants, set µ1 = κ1, and for n > 2 use (2.18) but setting κ1 = 0.

2.2.1 Proof of Lemma 2.1

Start by writing out the Maclaurin series for g, then use the multinomial theorem to expand
out the powers of the sum:

g

(
L∑
l=1

αlε
l

)
= g(0) +

∞∑
r=1

g(r)(0)
r!

(
L∑
l=1

αlε
l

)r

= g(0) +
∞∑
r=1

g(r)(0)
r!

∑
k∈Br

(
r

k1, . . . ,kL

) L∏
l=1

(αlε
l)kl , (2.24)

where
Br = {k = (k1, . . . ,kL) |k∗ = r, kj are nonnegative integers}. (2.25)

(Recall from (2.15) that k∗ =
∑L
j=1 kj.) As in (2.13), in the final product, 00 = 1. Rearranging a

bit yields

g

(
L∑
l=1

αlε
l

)
= g(0) +

∞∑
r=1

∑
k∈Br

g(k
∗)(0) ε

∑L
l=1 lkl

L∏
l=1

1
kl!
α
kl
l . (2.26)

Note that the double summation is over all 1× L vectors k whose elements are nonnegative
integers, and at least one element is positive. We regroup the k depending on their value
n =
∑L
l=1 lkl, the power of the ε. Then using the An from (2.14), we have

g

(
L∑
l=1

αlε
l

)
= g(0) +

∞∑
n=1

∑
k∈An

g(k
∗)(0) εs

L∏
l=1

1
kl!
α
kl
l , (2.27)

which verifies (2.12) and (2.13).
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2.3 The Edgeworth expansion
Suppose X1,X2, . . . are iid with distribution function FX(x), and have mean 0 and variance 1.
Let Z be the normalized sum

Z =

∑N
i=1 Xi√
N

. (2.28)

The central limit theorem shows that Z → N(0, 1) as N → ∞. The Edgeworth expansion of
the distribution function FZ(z) of Z to L terms has the form

F̂Z(z) = Φ(z) +
1√
N
Ψ1(z) +

1
N
Ψ2(z) + · · ·+

1
NL/2 ΨL(z), (2.29)

where Φ is the standard normal distribution function, and the Ψl are functions depending on
FX. If X has a density fX(x) with respect to Lebesgue measure, and the first L+ 2 moments of
X are finite, then

F̂Z(z) − FZ(z) = o

(
1

NL/2

)
. (2.30)

See Cramér (1946) and Esseen (1945) for details and proofs for this result and those below.
The error in the expansion is not correct when FX is a lattice distribution, which is the case for
the distances we consider. Section 2.3.1 presents an adjustment for such cases.

Our presentation follows that in Blinnikov & Moessner (1998). The Edgeworth expansion
relies on the complex version of the cumulant generating function, HX(t) from (2.6). Assume
that the (L+ 2)nd moment of Xi is finite, and apply (2.6) to obtain

KX(t) =

L+2∑
l=1

κl
(it)l

l!
+ o(|t|L+2). (2.31)

Since the Xi are independent, the cumulant generating function of
∑
Xi is NKX(t), hence that

for Z in (2.28) is

KZ(t) = NKX

(
t√
N

)
=

L+2∑
l=1

κl

Nl/2−1
(it)l

l!
+ o(|t|L+2). (2.32)

Thus the lth cumulant of Z is κl/Nl/2−1.
The Xi’s, hence Z, have first two cumulants being 0 and 1. We remove the little o term to

obtain our initial estimate of KZ:

K̂∗Z(t) = −
t2

2
+

L+2∑
l=3

κl

Nl/2−1
(it)l

l!
(2.33)

= −
t2

2
+

L∑
l=1

εl
κl+2(it)

l+2

(l+ 2)!
, where ε =

1√
N

. (2.34)

The corresponding initial estimate of the characteristic function of Z is

Ĥ∗Z(t) = e
K̂∗Z(t) = H(t) e

∑L
l=1 ε

l κl+2(it)
l+2/(l+2)!, (2.35)
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where H(t) = exp(−t2/2) is the characteristic function of the standard normal distribution.
We next find the expansion of the exponential term in (2.35) about ε.

Apply Lemma 2.1 to (2.35) with g(u) = eu, so that g(i)(0) = 1 for all i, and αj = κj+2/(j+
2)!. Then our final estimate of HZ is found from (2.12) and (2.13) by truncating at n = L:

ĤZ(t) = H(t)

1 +

L∑
l=1

εl
∑
k∈Al

(it)l+2k∗
L∏
j=1

1
kj!

(
κj+2

(j+ 2)!

)kj . (2.36)

See (2.14) and (2.15) for Al and k∗.
The characteristic function can be inverted to find the density, if the density exists. Thus if

X has characteristic function HX(t), then

1
2π

∫∞
−∞ e−itxHX(t)dt = f(x), (2.37)

where f is the density. Also, by differentiating, we obtain

1
2π

∫∞
−∞(−itx)le−itxHX(t)dt = f(l)(x) (2.38)

if the lth derivative of f exists. The estimate of the density of Z is then the inverse of the
estimated characteristic function:

f̂Z(z) =
1

2π

∫∞
−∞ e−itzĤZ(t)dt. (2.39)

This function may not be a valid density, e.g., it may not integrate to 1, or always be non-
negative, though still will be useful. We now distribute the integral over the summation on
right-hand side of (2.36). Since H is the standard normal characteristic function, we can use
(2.37) and (2.38) to show that

f̂Z(z) = φ(z) +

L∑
l=1

εl
∑
k∈Al

(−1)l+2k∗φ(l+2k∗)(z)

L∏
j=1

1
kj!

(
κj+2

(j+ 2)!

)kj
, (2.40)

where φ is the standard normal density, φ(z) = e−z
2/2/
√

2π. The corresponding estimate of
the distribution function is found by integrating:

F̂Z(z) = Φ(z) +

L∑
l=1

εl
∑
k∈Al

(−1)l+2k∗φ(l+2k∗−1)(z)

L∏
j=1

1
kj!

(
κj+2

(j+ 2)!

)kj
. (2.41)

Since ε = 1/
√
N, we have the form (2.29).

The derivatives of the standard normal density are related to Hermite polynomials via

φ(k)(z) = (−1)kφ(z)Hek(z), (2.42)
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where Hek is the kth Hermite polynomial. (There are two sets of Hermite polynomials. The
ones denoted Hk are related to the Hek’s by Hk(z) = 2k/2Hek(

√
2z).) Differentiation shows

that
He0(z) = 1, He1(z) = z, He2(z) = z

2 − 1, He3(z) = z
3 − 3z. (2.43)

In fact,
Hek+1(z) = zHek(z) −He

′
k(z). (2.44)

Now we can write (2.40) and (2.41), respectively, as

f̂Z(z) = φ(z)

1 +

L∑
l=1

εl
∑
k∈Al

Hel+2k∗(z)

L∏
j=1

1
kj!

(
κj+2

(j+ 2)!

)kj , and (2.45)

F̂Z(z) = Φ(z) −φ(z)

 L∑
l=1

εl
∑
k∈Al

Hel+2k∗−1(z)

L∏
j=1

1
kj!

(
κj+2

(j+ 2)!

)kj . (2.46)

To illustrate, take L = 3. For l = 1, Al contains just one vector, k = {(1, 0, 0)}. Thus k∗ = 1.
The coefficient of ε is then He3(z)κ3/3!. For l = 2, As = {(2, 0, 0), (0, 1, 0)}, so there are two
summands multiplying ε2:

He6(z)
1
2!

(κ3

3!

)2
+He4(z)

κ4

4!
= He6(z)

κ2
3

72
+He4(z)

κ4

24
. (2.47)

Finally, l = 3 yields As = {(3, 0, 0), (1, 1, 0), (0, 0, 1)}, so the coefficient of ε3 is

He9(z)
1
3!

(κ3

3!

)3
+He7(z)

κ3

3!
κ4

4!
+He5(z)

κ5

5!
= He9(z)

κ3
3

1296
+He7(z)

κ3κ4

144
+He5(z)

κ5

120
. (2.48)

2.3.1 The lattice case

If the Xi are concentrated on a lattice, the error term (2.30) is not correct. Esseen (1945) presents
an adjustment, consisting of extra terms in the summation. Suppose the Xi are concentrated on
the points a+ di, i ∈ {Integers} for some a and d. Kolassa & McCullagh (1990) prove that this
adjustment is asymptotically equivalent to using the Sheppard adjustment to the cumulants
in the original expansion. In place of the original cumulant κn, they use κ∗n = κn − d

lκUn/N,
where κUn is the nth cumulant of the Uniform(−1

2 , 1
2). Note that the odd cumulants of this

uniform are zero. For n > 2, it is equivalent to find the cumulants of the Uniform(0, 1), for
whom the moments are µj = 1/(j+ 1). Thus by (2.17),

κUn = n!
∑
k∈An

(−1)k
∗−1(k∗ − 1)!

L∏
j=1

1
kj!

(
1

(j+ 1)!

)kj
. (2.49)

These cumulants are also given by κUn = Bn/n, where Bn is the nth Bernoulli number. See
Wichura (2001, cumulants chapter). The even cumulants up through n = 20 are given in
(2.50).

n 2 4 6 8 10 12 14 16 18 20

κUn
1

12 − 1
120

1
252 − 1

240
1

132 − 691
32760

1
12 −3617

8160
43867
14364 −174611

6600

(2.50)
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For the Spearman and footrule distances, the adjustments do not change the approxima-
tions appreciably, since for even moderate m, their cumulants are much larger than those of
the uniform. For these distances, the gap is d = 2, hence forN = 1, the Sheppard adjustment is
2lκUl . Table (2.49) displays the cumulants for l = 4, 6, and 8, N = 1, and m = 10, for Spearman
and the footrule, as well as the corresponding Sheppard corrections. The cumulants increase
as m and l increase, while the adjustments are independent of m. Thus the corrections are
basically negligible.

Cumulants l = 4 l = 6 l = 8
Spearman −4.25×106 3.15×1010 −5.49×1014

Footrule −683 5.05×104 −8.21×106

Sheppard correction −0.133 0.254 −1.07

(2.51)

2.4 Mathematica code

2.4.1 Moment/cumulant conversions

Here we present some Mathematica functions for obtaining some moment conversions. Math-
ematica has a built in function, MomentConvert, that will symbolically convert one type of mo-
ment to another, e.g., central moments to cumulants, but I haven’t figured out how to use it
for what we need. The inputs for our conversion functions are

• n: the degree of the moment/cumulant;

• mom or cum: a function mom[n,m] or cum[n,m] that calculates the nth moment or cumulant
to be converted from;

• m: the number of objects ranked.

The functions are not specifically tied to ranking distances, so the m can represent any pa-
rameter(s), not just the number of objects.

The first helper function is moment2momentc, which implements the function in (2.9). The
function mom finds the raw moments of W, and c is the constant c. Then the function
raw2moment converts raw moments to regular moments, as in (2.10), and moment2raw does
the reverse, as in (2.10).
moment2momentc[n_,mom_,c_,m_] := If[NumericQ[c]&&c==0,mom[n,m],

Factor[Sum[Binomial[n,k]∗mom[k,m]∗c^(n−k),{k,0,n}]]];
raw2moment[n_,mom_,m_] := If[n==1,mom[1,m],moment2momentc[n,mom,−mom[1,m],m]];
moment2raw[n_,mom_,m_] := If[n==1,mom[1,m],moment2momentc[n,mom,mom[1,m],m]];

For the other conversions, we use the Faà di Bruno formula in Lemma 2.1. The key helper
functions are fs[n], which finds the set An in (2.14) for given n, and faaLambda[g,alpha,n], which
calculates the λn in (2.13). Here, g[i] is the g(i)(0) and alpha[j] is the αj. The km in the function
is the vector k.
fs[n_]:=If[n==1,{{1}},FrobeniusSolve[Range[n],n]]
faaLambda[g_,alpha_,n_] := (

If[n==0,Return[g[0]]];
Factor[Sum[g[Total[km]]∗Apply[Times,

Table[If[km[[j]]==0,1,(alpha[j])^km[[j]]/km[[j]]!], {j, 1, Length[km]}]],{km,fs[n]}]])
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Each conversion function is of the form typea2typeb, which takes as input the typea function
of moments or cumulants, and outputs the nth typeb value. In all cases, n should be a positive
integer (not just a symbol), while m can be a number or a symbol. By “moment” we mean
regular moment. Many of the conversions use faaLambda, the main task being to correctly
identify g and alpha.

raw2cumulant[n_,mom_,m_] := Module[{g,alpha},
If[n==0,Return[0]];
g[i_] := (i−1)!∗(−1)^(i−1);
alpha[j_] := mom[j,m]/j!;
faaLambda[g,alpha,n]∗n!

]
cumulant2raw[n_,cum_,m_] := Module[{g,alpha},

g[i_] := 1;
alpha[j_] := cum[j,m]/j!;
faaLambda[g,alpha,n]∗n!]

moment2cumulant[n_,mom_,m_] := Module[{},
If[n==1,Return[mom[1,m]]];
raw2cumulant[n,Function[{n0,m0},If[n0==1,0,mom[n0,m0]]],m]]

cumulant2moment[n_,cum_,m_] := Module[{},
If[n==1,Return[cum[1,m]]];
cumulant2raw[n,Function[{n0,m0},If[n0==1,0,cum[n0,m0]]],m]]

factorial2raw[n_,fmom_,m_]:= Module[{g,alpha},
g[i_] := fmom[i,m];
alpha[j_] := 1/j!;
faaLambda[g,alpha,n]∗n!]

raw2factorial[n_,mom_,m_] := Module[{g,alpha},
g[i_] := mom[i,m];
alpha[j_] := (−1)^(j−1)/j;
faaLambda[g,alpha,n]∗n!]

factorial2moment[n_,fmom_,m_] := Module[{raw},
raw[n0_,m0_] := factorial2raw[n0,fmom,m0];
raw2moment[n,raw,m]]

moment2factorial[n_,mom_,m_] := Module[{raw},
raw[n0_,m0_] := moment2raw[n0,mom,m0];
raw2factorial[n,raw,m]]

factorial2cumulant[n_,fmom_,m_] := Module[{raw},
raw[n0_,m0_] := factorial2raw[n0,fmom,m0];
raw2cumulant[n,raw,m]]

cumulant2factorial[n_,mom_,m_] := Module[{raw},
raw[n0_,m0_] := cumulant2raw[n0,mom,m0];
raw2factorial[n,raw,m]]

2.4.2 Edgeworth expansions

Again, we assume the Xi are iid with mean zero and variance one. The key input is cum, which
is the function cum[l,m] that yields the lth cumulant, where m is the number of objects ranked
(although in non-ranking situations it could be any relevant parameter needed to find the
cumulant). The main functions are edgeworthf and edgeworthF, which calculate the correction
expansions for the density and distribution function, respectively. The inputs are

• L, the number of desired terms in the expansion;
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• cum, m, the cumulant function and parameter m;

• z, the variable representing the normalized sum in (2.28), which is the main argument
in the function;

• N, the sample size.

We again use the function faaLambda, but here the g is the Hermite polynomial in (2.45),
which is a function of s and z as well as k∗:

g(k
∗)(0) = Hes+2k∗(z). (2.52)

The helper function edgeTerm implements this modification, calculating the summation over
k∗ for the density as in (2.45). The argument offset=0 in this case. For the distribution function
in (2.46), the offset=1, since the index of the Hermite polynomial is decreased by one. Mathe-
matica has the Hermite function HermiteH, which is the scaling favored by physicists. We need
the function Hel in (2.42), which according to MathWorld (Weisstein, 2018b), “is sometimes
(but rarely)” defined as we do. Our function he[r,x] performs the required rescaling.

The function edgeworthf sums the edgeTerm’s, multiplying by the εs = (1/N)s/2, and then
adding 1. The result is the correction term to the normal density in (2.45). The function
edgeworthF is analgous, but finds the term multiplying φ(z) for the distribution function in
(2.46).
edgeTerm[s_,offset_,cum_,m_,z_] := Module[{g,alpha},

g[i_] := he[s+2∗i−offset,z];
alpha[j_] := cum[j+2,m]/(j+2)!;
faaLambda[g,alpha,s]

]

edgeworthf[L_,cum_,m_,z_,N_] := 1+Total[Table[edgeTerm[s,0,cum,m,z]/N^(s/2),{s,1,L}]];
edgeworthF[L_,cum_,m_,z_,N_] := 1+Total[Table[edgeTerm[s,1,cum,m,z]/N^(s/2),{s,1,L}]];

2.5 R code
Parallel to the Mathematica code in the previous section, here we present some R code for
the Edgeworth expansions. The main functions require a set of cumulants as input. We
also provide a function to calculate cumulants from moments. For our purposes, we use
Mathematica to obtain formulas for the cumulants (at least for Spearman’s ρ and footrule),
then copy and paste those functions into R to use in the Edgeworth function.

As above, the variable z represents the normalized sum (2.28) of the Xi’s (which again
are iid with mean zero and variance one). The key functions are edgef(z,L,ncum,n) and
edgeF(z,L,ncum,n), which calculate the L-term Edgeworth expansion correction terms for the
density and distribution function, respectively, at the values z (a vector). Here, ncum is a vector
of length at least L+ 2, where ncum[l] is the lth cumulant of Xi. That is, edgef is the multiplier
of φ(z) in (2.45), and edgeF is the multiplier of Φ(z) in (2.46).

The function hermite(x,k) takes a vector x and finds the Hermite polynomials of degree
0, . . . ,k evaluated at the x. The output is a list with the ith component being the vector Hei(x).
The function findA(L) finds the sets As from (2.14) for s = 1, . . . ,L. The output is a list with
the sth component being a matrix with each row a 1× s vector k with

∑s
i=1 iki = s. Finally,
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pd(ku,mom,offset) finds the product as in (2.13). Here, ku is a 1 × L k, mom is a vector of
moments or cumulants, and offset shifts the index of mom:

pd(ku,mom,offset) =
L∏
j=1

1
kuj!

(
momj+offset

j!

)kuj
(2.53)

For (2.45), mom is the set of cumulants, and offset=2.
At the end of the listing we have the function moments_to_cumulants(mom), which takes a

vector of the first L moments, and finds the first L cumulants.

hermite <− function(x,k) {
hh <− vector(’list’,k+1)
names(hh) <− as.character(0:k)
hh[[1]] <− x−x+1
if(k>0) hh[[2]] <− x
if(k<2) return(hh)
for(n in 1:(k−1)) hh[[n+2]]<−x∗hh[[n+1]]−n∗hh[[n]]
hh

}

findA <− function(L) {
A <− vector("list",L)
A[[1]] <− matrix(1,1,1)
if(L==1) return(A)
K <− rbind(c(rep(0,L−1),1),0)
r <− c(0,L)
for(l in (L−1):1) {

for(i in 2:nrow(K)) {
mx <− floor(r[i]/l)
if(mx==0) {next}
for(k in 1:mx) {

newk <− K[i,]
newk[l] <− k
K <− rbind(K,newk)
r <− c(r,r[i]−k∗l)

}
}

}

s <− K%∗%(1:L)
for(l in 2:L) {

A[[l]] <− K[s==l,1:l]
rownames(A[[l]]) <− as.character(1:nrow(A[[l]]))

}
A

}

pd <− function(ku,mom,offset=0) {
ii <− (1:length(ku))[ku>0]
ku <− ku[ku>0]
prod((mom[ii+offset]/factorial(ii+offset))^ku/factorial(ku))

}
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edgef <− function(z,L,ncum,n=1) {
if(L==0) return(1)
A <− findA(L)
hh <− hermite(z,3∗L)
ef <− 0
for(s in 1:L) {

ef0 <− 0
for(i in 1:nrow(A[[s]])) {

ku <− A[[s]][i,]
ks <− sum(ku)
ef0 <− ef0 + hh[[s+2∗ks+1]]∗pd(ku,ncum,2)

}
ef <− ef + ef0/n^(s/2)

}
1+ef

}

edgeF <− function(x,L,ncum,n=1) {
if(L==0) return(0)
A <− findA(L)
hh <− hermite(x,3∗L−1)
ef <− 0
for(s in 1:L) {

ef0 <− 0
for(i in 1:nrow(A[[s]])) {

ku <− A[[s]][i,]
ks <− sum(ku)
ef0 <− ef0 + hh[[s+2∗ks]]∗pd(ku,ncum,2)

}
ef <− ef + ef0/n^(s/2)

}
ef

}

moments_to_cumulants <− function(mom) {
L <− length(mom)
ncum <− mom[1]
A <− findA(L)
for(s in 2:L) {

krt <− 0
for(i in 1:nrow(A[[s]])) {

ku <− A[[s]][i,]
ks <− sum(ku)
krt <− krt + (−1)^(ks−1)∗factorial(ks−1)∗pd(ku,mom)

}
ncum <− c(ncum,krt∗factorial(s))

}
ncum

}
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Chapter 3

Hoeffding distances

A number of popular distances, including the two Spearman distances and Hamming dis-
tance, can be written as

d(y,x) =
m∑
i=1

δ(yi, xi) (3.1)

for some function δ with δ(i, j) > 0, δ(i, i) = 0 for i, j ∈ {1, . . . ,m}. Such distances are called
Hoeffding distances, because their form is used in Hoeffding’s combinatorial central limit
theorem. See Section 3.2. (All the functions we consider are also symmetric, δ(i, j) = δ(j, i),
though that restriction is not necessary.) The Spearman distances can be generalized to the Lp
distances, where δ(i, j) = |i− j|p for some p > 0. The Hamming distance is the limit of the Lp
distance as p → 0. The maximum distance is in a sense the limit as p → ∞, but in that case
we take the limit of (

∑
|yi − i|

p)1/p.
In Section 3.1, we present convenient formulas for the first two moments of a Hoeffding

distance. Section 3.2 gives Hoeffding’s condition for the central limit theorem to apply. Section
3.3 gives a general approach to finding the exact distribution of the distance which is practical
for m up to 25 or so, versus 10 to 15 for using exhaustive enumeration.

3.1 First two moments
For Hoeffding distances, some moment formulas are easier to derive using matrix representa-
tions. Let d be a Hoeffding distance based on δ as in (3.1). Let Qy be the permutation matrix
corresponding to y, i.e.,

y = ωQ ′y, (3.2)

and define Qx via x = ωQ ′x. Also, let ∆ be the m×m matrix with ∆ij = δ(i, j). We then can
write

d(y,x) = trace(Qy∆Q ′x). (3.3)

Since Qω = Im, the m×m identity matrix, d(y,ω) = trace(Qy∆). Also, if Y ∼ Uniform(Pm),
then QY is uniformly distributed over Qm, the set of m×m permutation matrices. Thus we
are interested in the distribution of D, where

D = trace(Q∆), Q ∼ Uniform(Qm). (3.4)

23
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Each element of Q is Bernoulli( 1
m ), hence

E[Q] =
1
m

1 ′m1m, where 1m = (1, . . . , 1), (3.5)

the 1 ×m vector of 1’s. For the covariance matrix, first note that Var[Qij] = (m − 1)/m2

since it is Bernoulli. For elements within the same row, we have E[QijQij ′] = 0 if j 6= j ′,
since at most one element can equal 1. Similarly for two elements in the same column. For
two elements in different rows and columns, the chance both equal 1 is 1/(m(m− 1)). For
example, P[Q11 = 1 & Q22 = 1] = P[Q11 = 1]P[Q22 = 1 |Q11 = 1]. The first probability is
1/m, but given Q11 = 1, the second row must have a 1 in one of the slots 2, . . . ,m, hence the
conditional probability is 1/(m− 1). Thus the covariances are

Cov[Qij,Qi ′j ′] =


(m− 1)/m2 if i = i ′, j = j ′

−1/m2 if i = i ′, j 6= j ′

−1/m2 if i 6= i ′, j = j ′

1/(m2(m− 1)) if i 6= i ′, j 6= j ′

. (3.6)

The next lemma helps to neaten up the formula. Note that if m = 1, Q ≡ 1, so that
Cov[Q] = 0.

Lemma 3.1. If Q ∼ Uniform(Qm) and m > 1,

Cov[Q] =
1

m− 1
H ⊗H . (3.7)

We have to explain the notation. First, H is the m×m centering matrix,

H = I −
1
m

1 ′1. (3.8)

If z = (z1, . . . , zm), then Hz ′ = (z1 − z, . . . , zm − z) ′. Also, H is symmetric and idempotent.
Thus in particular

H1 ′ = (0, 0, . . . , 0) ′ and HH =H . (3.9)

We use the convention that the covariance matrix of a matrix is the covariance matrix of the
vector formed by stringing out its rows. Thus for an a× b matrix W ,

Cov[W ] ≡ Cov[row(W )], where row(W ) = (W11,W12, . . . ,W1b,W21, . . . ,W2b,
. . . ,Wa1, . . . ,Wab). (3.10)

The “⊗” in (3.7) indicates a Kronecker product, where ifA is k×k ′ andB is l× l ′, thenA⊗B
is the kl× k ′l ′ matrix

A⊗B =


a11B a12B · · · a1k ′B
a21B a22B · · · a2k ′B

...
... . . . ...

ak1B ak2B · · · akk ′B

 . (3.11)
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Kronecker products have a number of useful properties. A couple we need here follow.
Suppose Cov[W ] = Σ ⊗Λ. The individual variances and covariances can be found using

Cov[Wij,Wi ′j ′] = σii ′λjj ′ . (3.12)

If A and B are matrices for which the multiplications make sense,

Cov[AWB ′] = AΣA ′ ⊗BΛB ′. (3.13)

Proof of Lemma 3.1. To show (3.7), we note that the diagonals of H are all (m− 1)/m, and the
off-diagonals are all −1/m. Thus using (3.12) on the right-hand side of (3.7),

Var[Qii] =
1

m− 1

(
m− 1
m

)2

=
m− 1
m2 ;

Cov[Qij,Qi ′j] = Cov[Qij,Qij ′] =
1

m− 1
m− 1
m

(
−

1
m

)
= −

1
m2 , i 6= i ′, j 6= j ′;

Cov[Qij,Qi ′j ′] =
1

m− 1

(
−

1
m

)2

=
1

(m− 1)m2 , i 6= i ′, j 6= j ′. (3.14)

These equations conform to (3.6), proving (3.7).

The main results of this section are expressions for the mean and variance of a Hoeffding
distance D. We use the analysis-of-variance-like notation on δ:

δ(·, j) = 1
m

m∑
i=1

δ(i, j), δ(i, ·) = 1
m

m∑
j=1

δ(i, j), δ(·, ·) = 1
m2

m∑
i=1

m∑
j=1

δ(i, j), (3.15)

and
δ∗(i, j) = δ(i, j) − δ(·, j) − δ(i, ·) + δ(·, ·). (3.16)

Note that the δ∗’s are the interaction terms if we consider ∆ a two-way layout.

Proposition 3.2. If Y ∼ Uniform(Pm), D ≡ d(Y ,ω) for d in (3.1) satisfies

E[D] =
1
m

1∆1 ′ = mδ(·, ·)

= −trace(H∆) = −trace(H∆H) = −

m∑
i=1

δ∗(i, i), and if m > 1,

Var[D] =
1

m− 1
trace(H∆ ′H∆) =

1
m− 1

m∑
i=1

m∑
j=1

δ∗(i, j)2. (3.17)

If m = 1, Var[D] = 0.

Proof. We use the representation (3.4), so that D = trace(Q∆) where Q ∼ Uniform(Qm). For
the mean, (3.5) and the linearity of trace show that

E[D] = trace(E[Q]∆) =
1
m

trace(1 ′1∆) =
1
m

1∆1 ′, (3.18)
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since trace(AB) = trace(BA). Also, 1∆1 ′ is the sum of all the δ(i, j)’s, hence the sec-
ond expression for the mean follows from (3.15). Next, since the diagonals of ∆ are zero,
trace(I∆) = 0, hence by (3.8) and (3.9) we can also write the mean as in the second line. Then
the final equality in that line holds since the elements of H∆H are the δ∗(i, j)’s.

For the variance, from (3.7) and (3.13),

Cov[Q∆] =
1

m− 1
H ⊗∆ ′H∆. (3.19)

Now if W is m×m with covariance matrix Σ ⊗Ω, then

Var[trace(W )] =

m∑
i=1

m∑
j=1

Cov[Wii,Wjj]

=

m∑
i=1

m∑
j=1

σijωij by (3.12)

= trace(ΣΛ). (3.20)

Thus the first expression for Var[D] in (3.17) follows from (3.19), and we can write

trace(H∆ ′H∆) = trace(H∆ ′HH∆H) = trace((H∆H) ′(H∆H)), (3.21)

from which the last equality follows.

3.2 Hoeffding’s CLT
For the Hoeffding distances, we have the famous theorem by Hoeffding (1951). We can get
away with a weaker version of his Theorem 4, the condition given by his Equation (12).

Theorem 3.3 (Hoeffding). Suppose that for Hoeffding distance (3.4),

max{δ∗(i, j)2 | 1 6 i, j 6 m}

Var(D)
−→ 0 (3.22)

as m→∞, where δ∗ is defined in (3.16). Then

D− E[D]√
Var(D)

−→ N(0, 1). (3.23)

We can replace the δ∗ by δ in the numerator of (3.22): By (3.16) and the triangle inequality,

|δ∗(i, j)| 6 |δ(i, j)|+ |δ(·, j)|+ |δ(i, ·)|+ |δ(·, ·)| 6 4 max{|δ(i, j)| | 1 6 i, j 6 m}, (3.24)

since the absolute value of an average is no larger than the maximum absolute value. Thus
the maximum of the δ∗2’s is less than or equal to 16 times the maximum of the δ2’s.

See Sections 4.1 and 5.1 for applications in Spearman’s ρ and footrule cases, respectively.
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3.3 Exact distribution: The splitting algorithm
In what follows, we will suppose that the range of δ is in the nonnegative integers, and that
δ(i, i) = 0. If not, some minor modifications would be needed.

To find the exact distribution of

D ≡ d(Y ,ω) =
m∑
i=1

δ(Yi, i), Y ∼ Uniform(Pm), (3.25)

(as in (1.1), Pm is the set of permutations of the integers {1, . . . ,m}), we can use a splitting
algorithm as introduced in Franklin (1988) for Spearman’s ρ distance. Start with two subvec-
tors. Choose m1 ≈ m/2, and for y ∈ Pm, let y(1) = (y1, . . . ,ym1) and y(2) = (ym1+1, . . . ,ym),
and similarly split up ω: ω(1) = (1, . . . ,m1), ω(2) = (m1 + 1, . . . ,m). Then

d(y,ω) = d(y(1),ω(1)) + d(y(2),ω(2)). (3.26)

Now Y (1) and Y (2) are not independent, but conditioning on the set of values each vector
chooses from, they are. That is, S = (R1,R2) is a splitting, where R1 is a subset of m1 distinct
elements from 1, . . . ,m, and R2 is its complement, {1, . . . ,m}−R1. Also, let

P(Ri) = {permutations of elements in Ri}. (3.27)

Then under the assumption that Y ∼ Uniform(Pm),

Y (1) and Y (2) are independent given that Y (1) ∈ P(R1) (⇔ Y (2) ∈ P(R2)), (3.28)

Y (1) | Y (1) ∈ P(R1) ∼ Uniform(P(R1)),

Y (2) | Y (2) ∈ P(R2) ∼ Uniform(P(R2)), (3.29)

and

R1 ∼ Uniform({All possible subsets of m1 distinct elements from 1, . . . ,m}). (3.30)

For splitting S, let fi(x | S) be the following conditional density of d:

fi(x | S) = P[d(Y
(i),ω(i)) = x |Y (i) ∈ P(Ri)], i = 1, 2. (3.31)

Then by (3.26) and the conditional independence in (3.28), we can use convolutions to find the
conditional density of d(Y ,ω):

f(x | S) = P[d(Y ,ω) = x |Y (i) ∈ P(Ri), i = 1, 2]

= P[d(Y (1),ω(1)) + d(Y (2),ω(2)) = x |Y (i) ∈ P(Ri), i = 1, 2]

=

x∑
u=0

P[d(Y (1),ω(1)) = u & d(Y (2),ω(2)) = x− u |Y (i) ∈ P(Ri), i = 1, 2]

=

x∑
u=0

P[d(Y (1),ω(1)) = u |Y (1) ∈ P(R1)]P[d(Y
(2),ω(2)) = x− u |Y (2) ∈ P(R2)]

=

x∑
u=0

f1(u | S)f2(x− u | S). (3.32)
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Then the unconditional density of d(Y ,ω) is found by taking the expectation of the condi-
tional density function over splittings S in (3.32):

f(x) = P[d(Y ,ω) = x] = E[f(x | S)]. (3.33)

The expression (3.33) leads us to our algorithm. For each splitting, we enumerate all the
values of d(y(i),ω(i)) for y(i) ∈ P(Ri), i = 1, 2, and find their densities:

fi(x | S) =
1
mi!

#{y(i) ∈ P(Ri) |d(y
(i),ω(i)) = x}, (3.34)

where m2 = m−m1. The conditional density of d(Y ,ω) is then the convolution

f(x | S) =

x∑
u=0

f1(u | S)f2(x− u | S). (3.35)

Let S be the set of all splittings. The final answer takes the average over the splittings:

f(x) =

(
m

m1

)−1∑
S∈S

f(x | S). (3.36)

The actual algorithm accumulates the probabilities by first setting s(i) = 0 for i in the support
of D. It then iterates over all splittings S, and over all u and v in the supports of d(Y (1),ω(1))
and d(Y (2),ω(2)), respectively, for (Y (1),Y (2)) ∈ (R1,R2), the following code:

s(u+ v)← s(u+ v) + f1(u | S)f2(v | S). (3.37)

Then f(x) = s(x)/
(
m
m1

)
.

The basic algorithm as in (1.3) enumerates all m! rank vectors. The above algorithm is
somewhat better since for each of the

(
m
m1

)
splittings, it enumerates over m1!+m2! subvectors.

Thus the ratio

#{enumerations with splitting algorithm}

#{enumerations with basic algorithm}
=

(
m
m1

)
(m1! +m2!)

m!
=
m1! +m2!
m1!m2!

≈ 2
m1!

(3.38)

if m1 ≈ m/2. For m = 10 we reduce the number of enumerations by a factor of 60, and for
m = 20, by a factor of about 1.8 million.

A further splitting helps even more. Given a splitting (R1,R2), we split each Ri into two
approximately equal-sized sets (Ri1,Ri2), and similarly for the y(i)’s and ω(i)’s. For each (i, j)
we enumerate over P(Rij) as in (3.34):

fij(x | Rij) = P[P[d(Y
(ij),ω(ij)) = x |Y (ij) ∈ P(Rij)]

=
1
mij!

#{y(ij) ∈ P(Rij) |d(y
(ij),ω(ij)) = x}, (3.39)

where mij = #Rij. Similar to (3.36), for each i, we find

fi(x | Ri) =

(
mi

mij

)−1 ∑
splittings (Ri1,Ri2)

x∑
u=0

fi1(u | Ri1)fi2(x− u | Ri2). (3.40)
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Then use (3.36) again to find f(x). The ratio corresponding to that in (3.38) is

1
m!

(
m

m1

)((
m1

m11

)
(m11! +m12!) +

(
m2

m21

)
(m21! +m22!)

)
≈ 4
m1!m11!

, (3.41)

if themij’s are approximately equal. E.g., withm = 20, we reduce the number of enumerations
by a factor of 60 over the one-split algorithm, and by about 108 over the basic algorithm.

Even with this more efficient algorithm, for m = 20, we need 4 · 20!/(10!5!) ≈ 2.23× 1010

enumerations. Further splitting would not help much either. E.g., splitting each 5 into 2 and
3 only reduces the enumerations by a factor of 2!3!/(2! + 3!) = 2.25, and the more complicated
algorithm has more overhead, which we have not factored in.
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Chapter 4

Spearman’s distance

4.1 First two moments
Spearman’s distance has a symmetric distribution about its mean, so that the odd moments
other than the first are zero. Pearson (1907) appears to be the first to find the variance, whose
proof he attributes to Student. Hotelling & Pabst (1936) find the fourth moment. David,
Kendall, & Stuart (1951) calculate the first eight moments. We find the first two moments in
this section, and the fourth through eighth moments in Section 4.2.

Spearman’s distance uses δSpear(i, j) = (i− j)2 = i2 + j2 − 2ij, hence we can write

∆Spear = s
′1+ 1 ′s− 2ω ′ω, where s = (1, 22, . . . ,m2), (4.1)

and ω = (1, . . . ,m) as before. Using (3.9),

H∆SpearH = −2Hω ′ωH , (4.2)

hence
δ∗(i, j) = −2(i− ν)(j− ν), where ν =

m+ 1
2

. (4.3)

Then using (3.17) for the mean we have

E[dSpear(Y ,ω)] = 2
m∑
i=1

(i− ν)2 =
m(m2 − 1)

6
. (4.4)

The final expression follows by noting that the variance of a discrete uniform random variable
on {1, . . . ,m} is (m2 − 1)/12.

For the variance, assuming m > 1, (3.17) yields

Var[dSpear(Y ,ω)] =
4

m− 1

m∑
i=1

m∑
j=1

(i− ν)2(j− ν)2

=
4

m− 1

(
m(m2 − 1)

12

)2

=
m2(m− 1)(m+ 1)2

36
. (4.5)

31
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4.2 The fourth (and higher) moments

Turn to higher moments. The distribution of Spearman’s ρ is symmetric about its mean, so
the odd central moments (other than the mean) are all 0. David et al. (1951) find the moments
up to the eighth by hand. We are lucky to have technology to do the heavy lifting. Here we
describe their method, and implement it in Mathematica®.

Note that similar to above, we can write δ(i, j) = (i−ν)2 + (j−ν)2 − 2(i−ν)(j−ν), so that

DSpear ≡ dSpear(Y ,ω) =
m(m2 − 1)

6
− 2W, where W =

m∑
i=1

Wi, Wi ≡ (Yi − ν)(i− ν). (4.6)

We will work with W, then for n > 2 use

E[(DSpear − E[DSpear])
n] = (−2)n E[(W − E[W])n]. (4.7)

We start by expanding the sum of Wi’s into an n-fold summation of monomials of them,
then separate the overall sum into sums depending on equalities among the indices. Write

Wn =

(
m∑
i=1

Wi

)n
=

m∑
i1

· · ·
m∑
in

Wi1 · · ·Win . (4.8)

For a set of indices i = (i1, . . . , in), we consider all possible sets of equalities among them. For
given i, let k(i) be the set partition of {1, . . . ,n} that describes the equalities, i.e.,

k(i) = (K1, . . . ,Kr), where ia = ib ⇔ a,b ∈ Kk for some k. (4.9)

Here, r is the number of distinct values in i. Note that r 6 m, since there are only m Wi’s. In
order to insure uniqueness of the set partitions, we require that

min(K1) < min(K2) < · · · < min(Kr). (4.10)

Then
Wn =

∑
{K∈SPn,m}

∑
{i |k(i)=K}

Wi1 · · ·Win , (4.11)

where SPn,m is the set of set partitions of {1, . . . ,n} with at most m components. The sum-
mands above are products of powers of the Wi’s. For set partition K, let n be the vector of
cardinalities of the component sets:

n = n(K) = (#K1, . . . , #Kr). (4.12)

Then n is a composition of the integer n, i.e., a set of positive integers that sum to n. Now
we have for given set partition K with r 6 m,∑

i |k(i)=K

Wi1 · · ·Win =
∑

16j1,...,jr6m
distinct

W
n1
j1
· · ·Wnr

jr
≡ Vn, n = n(K). (4.13)
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Using the definition of Wi from (4.6), the expected value of Vn is

E[Vn] =
∑

16j1,...,jr6m
distinct

E[(Yj1 − ν)
n1 · · · (Yjr − ν)

nr](j1 − ν)
n1 · · · (jr − ν)nr . (4.14)

Since the distribution of Y is permutation invariant, the expected value in the summand does
not depend on the (j1, . . . , jr), as long as they are distinct. Thus

E[Vn] = E[(Y1 − ν)
n1 · · · (Yr − ν)nr] τ(n) where τ(n) =

∑
· · ·
∑

16j1,...,jr6m
distinct

(j1 − ν)
n1 · · · (jr − ν)nr .

(4.15)

The expected value can be found by averaging over all sets (y1, . . . ,yr), where the entries are
distinct integers between 1 and m, just like the indices in τ. That is,

E[(Y1 − ν)
n1 · · · (Yr − ν)nr] =

τ(n)

(m)r
(4.16)

and

E[Vn] =
τ(n)2

(m)r
. (4.17)

The Pochhammer symbol (m)r is the falling factorial defined for nonnegative integers r by

(m)0 = 1, (m)r = m(m− 1) · · · (m− r+ 1) for r > 0. If 0 6 r 6 m, (m)r =
m!

(m− r)!
. (4.18)

We can now find E[Wn] from (4.11) by summing the E[Vn]’s over the set partitions K, but
first note that τ(n) does not depend on the order of the nj’s in n. Thus we can restrict to
integer partitions of n, which are combinations with the elements in nonincreasing order,
n1 > n2 > · · · > nu. Then

E[Wn] =
∑

n∈IPn,m

ζn
τ(n)2

(m)r
, (4.19)

where IPn,m is the set of integer partitions of n with at most m components, and

ζn = #{Set partitions K corresponding to n}

=

(
n

n1, . . . ,nr

)
1

u1! · · ·ur!
, where uj = #{ni = j | i = 1, . . . , r}. (4.20)

We illustrate with n = 4. The table below contains the integer partitions of n and the
corresponding set partitions K, where, e.g., (13, 2, 4) represents K = ({1, 3}, {2}, {4}).

Integer partition n Set partitions K ζn

(4) (1234) 1
(3, 1) (123, 4), (124, 3), (134, 2), (1, 234) 4
(2, 2) (12, 34), (13, 24), (14, 23) 3
(2, 1, 1) (12, 3, 4), (13, 2, 4), (14, 2, 3), (1, 23, 4), (1, 24, 3), (1, 2, 34) 6
(1, 1, 1, 1) (1, 2, 3, 4) 1

(4.21)
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The next task is to calculate the τ. The complication is the requirement that the indices
be distinct. To simplify the calculations, we write each sum without that requirement, then
subtract the summands that violate it. Those summands are in fact also τ’s for some partition
with smaller number of elements. Analogous to (4.11), for given n = (n1, . . . ,nr), we write

m∑
i1=1

· · ·
m∑
ir=1

(i1 − ν)
n1 · · · (ir − ν)nr =

∑
K∈SPr,m

∑
{i |k(i)=K}

(i1 − ν)
n1 · · · (ir − ν)nr . (4.22)

The individual summations on the left-hand side of (4.22) can be distributed to obtain
m∑
i1=1

(i1 − ν)
n1 · · ·

m∑
ir=1

(ir − ν)
nr ≡ ηn1 · · ·ηnr , (4.23)

where

ηk =

m∑
i=1

(i− ν)k = mE[(U− E[U])k], U ∼ Uniform{1, . . . ,m}, (4.24)

the kth central moment of the discrete uniform, times m. By symmetry, ηk = 0 if k is odd. On
the right-hand side of (4.22), τ(n) is the summation for all the indices being distinct, so that
K = ({1}, {2}, . . . , {m}). For the other summations, some of the indices are equal, hence some
of the powers are added together. That is, for n and K, let

n∗(n,K) = sort(n∗1, . . . ,n∗s), where n∗j =
∑
i∈Kj

ni, (4.25)

where we put the elements of n∗ into nonincreasing order. Then∑
i |k(i)=K

(i1 − ν)
n1 · · · (ir − ν)nr = τ(n∗(n,K)). (4.26)

Rearranging (4.22), we obtain

τ(n) = ηn1 · · ·ηnr −
∑

K∈SPr,m

K 6={{1},{2},...,{r}}

τ(n∗(n,K)). (4.27)

Each of the n∗’s on the right-hand side has fewer than r components. Also, for the case all
indices are equal (r = 1),

τ(n) =

m∑
i=1

(i− ν)n = ηn. (4.28)

Thus we can find the τ’s sequentially, since for r > 1, the summation term in (4.27) is a
function of the τ’s for n of length less than r.

Turn to E[W4], taking m > 4. From (4.19) and (4.21), we have

E[W4] =
τ(4)2

m
+ 4

τ(3, 1)2

m(m− 1)
+ 3

τ(2, 2)2

m(m− 1)

+ 6
τ(2, 1, 1)2

m(m− 1)(m− 2)
+

τ(1, 1, 1, 1)2

m(m− 1)(m− 2)(m− 3)
. (4.29)
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By (4.28), we have τ(4) = η4. For partition (3, 1), there is only one possible equality among
the two indices, hence

τ(3, 1) = η3η1 − τ(4) = −η4, (4.30)

since η1 = η3 = 0. Similarly, for (2, 2),

τ(2, 2) = η2
2 − η4. (4.31)

The set partitions K for (2, 1, 1) are (12, 3), (13, 2), (1, 23), and (123), so that the respective
n∗((2, 1, 1),K)’s are (3, 1), (3, 1), (2, 2), and (4). Then by (4.27),

τ(2, 1, 1) = −2τ(3, 1) − τ(2, 2) − η4 = −η2
2 + 2η4. (4.32)

For τ(1, 1, 1, 1), we need the set partitions of {1, 2, 3, 4}. These we have already exhibited in
(4.21). Thus we can write

τ(1, 1, 1, 1) = η4
1 − 6 τ(2, 1, 1) − 3 τ(2, 2) − 4 τ(3, 1) − τ(4)

= 3η2
2 − 6η4. (4.33)

By (4.24), we need the variance and fourth central moment of the discrete uniform, which
result in

η2 =
m(m2 − 1)

12
and η4 =

m(m2 − 1)(3m2 − 7)
240

. (4.34)

We have the ingredients in (4.29) through (4.34) to find E[W4]. Mathematica® will easily
calculate the following:

E[W4] =
(m− 1)m3(m+ 1)3 (25m3 − 38m2 − 35m+ 72

)
172800

. (4.35)

Finally, by (4.7), we have

E[(DSpear − E[DSpear])
4] = 16E[W4] =

(m− 1)m3(m+ 1)3 (25m3 − 38m2 − 35m+ 72
)

10800
. (4.36)

Using the code in Section 4.2.1, we obtain the sixth central moment (if m > 6) as

E[(DSpear − E[DSpear])
6] =

(m− 1)m3(m+ 1)3

3810240
(1225m8 − 4361m7 − 178m6 + 23818m5

− 22783m4 − 50081m3 + 54280m2 + 44160m− 28800), (4.37)

and the eighth central moment (if m > 8) as

E[(DSpear − E[DSpear])
8] =

(m− 1)m3(m+ 1)3

489888000
(30625m13 − 218050m12 + 451718m11

+ 1090534m10 − 6275976m9 + 2142858m8 + 30402746m7 − 27330110m6 − 79689881m5

+ 71871632m4 + 110888256m3 − 74721024m2 − 51867648m+ 40642560). (4.38)

These conform to the formulas in David et al. (1951), though they look at the correlation rather
than distance.



DRAFT

36 CHAPTER 4. SPEARMAN’S DISTANCE

4.2.1 Mathematica code

The key functions find the various nth moments (see Section 2.1) when there are m objects
ranked: spearmanRawMoment[n,m], spearmanMoment[n,m], spearmanCumulant[n,m] and spearman-
NormalizedCumulant[n,m]. In each case, the nmust be a nonnegative integer (not just a symbol),
while m can be either a positive integer, or a symbol (i.e., “m”). If it is a symbol, then the
output is a function of m that is correct if m > n. For m < n, the routines need to have both
n and m input as integers.

The code below shows the above functions plus the helper functions. Note that we need
to load the Combinatorica package. The functions setPartitions and integerPartitions find the
set and integer partitions of {1, . . . ,n} and n, respectively, but limit the output to just those
with at most m components. The eta is the ηk from (4.24) and etaprod is the product in
(4.23); nstar is the function n∗ in (4.25); tauk (and taukN) and tau (and tauN ) denote the
summands and sum, respectively, of τ in (4.20); zeta is ζn in (4.20); and denom is the product
m(m− 1) · · · (m− r+ 1) as in the denominator of the summands in (4.19). The moments of
DSpear are based on the moments of W in (4.6), which are calculated in spearmanWMoment,
which uses the two other functions depending on whether m is an integer or symbol. We also
use the functions moment2momentc and raw2cumulant from Section 2.4.

Needs["Combinatorica‘"]

setPartitions[n_,m_] := Select[Combinatorica‘SetPartitions[n],Function[Length[#1]<=m]];
integerPartitions[n_,m_] := Select[IntegerPartitions[n],Function[Length[#1]<=m]];
eta[k_,m_] := If[EvenQ[k],Sum[(i − (m + 1)/2)^k, {i, 1, m}],0];
etaprod[nn_,m_] := Apply[Times, Table[eta[ni,m], {ni,nn}]];
nstar[nn_, s_] := Sort[Map[Total, Table[Part[nn, si], {si, s}]], Greater];
zeta[nn_] := Apply[Multinomial, nn]/Apply[Times, Map[Factorial, Values[Counts[nn]]]];
denom[l_, m_] := Pochhammer[m − l + 1, l];
spearmanWMomentS[n_,m_] := Module[{tau,tauk},

tau[nn_,m0_] := tau[nn,m0] = Total[Table[tauk[nn, s,m0],
{s, Combinatorica‘SetPartitions[Length[nn]]}]];

tauk[nn_, s_,m0_] := If[Length[s] == Length[nn], etaprod[nn,m0], −tau[nstar[nn, s],m0]];
Factor[Sum[zeta[nn]∗tau[nn,m]^2/denom[Length[nn], m], {nn,IntegerPartitions[n]}]]];

spearmanWMomentN[n_,m_] := Module[{tauN,taukN},
tauN[nn_,m0_] := tauN[nn,m0] = Total[Table[taukN[nn, s,m0],

{s, setPartitions[Length[nn],m0]}]];
taukN[nn_, s_,m0_] := If[Length[s] == Length[nn], etaprod[nn,m0], −tauN[nstar[nn, s],m0]];
Factor[Sum[zeta[nn]∗tauN[nn,m]^2/denom[Length[nn], m], {nn,integerPartitions[n,m]}]]];

spearmanWMoment[n_,m_] := (
If[!IntegerQ[n],return[(Print["n must be a nonnegative integer"];Abort[])]];
If[OddQ[n],Return[0]];
If[IntegerQ[m],spearmanWMomentN[n,m],spearmanWMomentS[n,m]]);

spearmanRawMoment[n_,m_] := (−2)^n∗moment2momentc[n,spearmanWMoment,−m∗(m^2−1)/12,m];
spearmanMoment[n_,m_] := If[n==1,m∗(m^2−1)/6,2^n∗spearmanWMoment[n,m]];
spearmanCumulant[n_,m_] := If[n==1,m∗(m^2−1)/6,(−2)^n∗raw2cumulant[n,spearmanWMoment,m]];
spearmanNormalizedCumulant[n_,m_] := (

If[n==1,Return[0]];
If[n==2,Return[1]];
spearmanCumulant[n,m]/spearmanCumulant[2,m]^(n/2)

)
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4.3 Exact distribution
Maciak (2009) improves the Franklin (1988) splitting algorithm described in Section 3.3 for the
Spearman distance by taking advantage of some redundancies. Also, van de Wiel & Bucchi-
anico (2001) develop a different, but seemingly as effective, algorithm based on permanents.
Here we describe some of Maciak’s improvements.

It is easier to deal with the cross-product of the rankings, where

dSpear(y,x) =
m∑
i=1

(yi − xi)
2 = 2

m∑
i=1

i2 − 2
m∑
i=1

yixi

=
m(m+ 1)(2m+ 1)

3
− 2

m∑
i=1

yixi. (4.39)

The algorithm finds the distribution of

C(Y ,ω) =
m∑
i=1

Yiωi =

m∑
i=1

iYi. (4.40)

The procedure runs along the same lines as that for D in (3.25), but with some shortcuts.
As in Section 3.3, we take m1 ≈ m/2, m2 = m−m1, and split C into C(1) +C(2), where

C1 = C(Y (1),ω(1)) =

m1∑
i=1

iYi and C2 = C(Y (2),ω(2)) =

m∑
i=m1+1

iYi. (4.41)

Condition on the splitting S = (R1,R2), so that the vectors Y (1) and Y (2) are independent,
Y (i) being uniformly distributed over permutations of Ri, i = 1, 2, as in (3.28) and (3.29). Let
y(1) and y(2) be fixed members of P(R1) and P(R2), respectively. (E.g., if R1 = {r1, . . . , rm1},
then y(1) = (r1, . . . , rm1).) Then we can equivalently represent the conditional distributions of
the Ci’s by

C1 = C(y(1),W (1)) and C2 = m1σ2 +C(y
(2),W (2)), (4.42)

where

W (1) and W (2) are independent, W (1) ∼ Uniform(Pm1), and W (2) ∼ Uniform(Pm2), (4.43)

and we set σi =
∑mi
j=1 y

(i)
j . (Note that σi is the same for every y(i) ∈ Ri.)

To calculate the distribution of C(y(i),W (i)), we enumerate the permutations of 1, . . . ,mi:

fi(c | S) =
1
mi!

#{w(i) ∈ Pmi |C(y
(i),w(i)) = c}. (4.44)

But note that for w(i) ∈ Pmi , (mi + 1) −w(i) ∈ Pmi as well, and

C(y(i), (mi + 1) −w(i)) = (mi + 1)σi −C(y(i),w(i)). (4.45)
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If we let P∗mi be the set of permutations that has exactly one of each pair {w,mi + 1 −w},
w ∈ Pmi , then we need enumerate over only half the permutations:

fi(c | S) =
gi(c) + gi((mi + 1)σi − c)

mi!
, (4.46)

where
gi(c) = #{w(i) ∈ P∗mi |C(y

(i),w(i)) = c}. (4.47)

To find the conditional distribution of C(Y ,ω), i.e., of C1 + C2 in (4.42), we convolve the f1
and f2 as in (3.35), and also shift by a constant:

f(c+m1σ2 | S) = h(c | S), where h(c | S) =

c∑
u=0

f1(u | S)f2(c− u | S). (4.48)

To find the unconditional density of C(Y ,ω), we average over the splittings as in (3.36):

f(x) =

(
m

m1

)−1∑
S∈S

f(x | S) =

(
m

m1

)−1∑
S∈S

h(x−m1σ2 | S). (4.49)

If m is even and we take m1 = m2 ≡ m, another shortcut arises from noting that W (1)

and W (2) have the same distribution. Thus the distribution of (C(y(1),W (1)),C(y(2),W (2)))
conditioning on the splitting (R1,R2) is the same as that of (C(y(2),W (1)),C(y(1),W (2))) con-
ditioning on the splitting (R2,R1). This symmetry implies that we have to find the convolution
over only half of the splittings. Let S∗ be splittings (R1,R2) for which 1 ∈ R1. (Thus each S ∈ S
is either (R1,R2) or (R2,R1) for some (R1,R2) ∈ S∗.) The unconditional density of C is found
by using the same h in (4.48) for S = (R1,R2) and S = (R2,R1), but with different shifts for
the f:

f(x) =

(
m

m1

)−1 ∑
S∈S∗

(h(x−mσ2 | S) + h(x−mσ1 | S)). (4.50)

As in (3.39) through (3.41), we can further split R1 and R2, and use the extra symmetry as
in (4.50) if either or both of m1 and m2 are even. Maciak (2009) has even more symmetries
that can speed up the algorithm, but we stopped at the above.

Once we obtain the density for C(Y ,ω) in (4.40), we can obtain the density of dSpear(Y ,ω)
in (4.39):

fSpear(z) = P[dSpear(Y ,ω) = z] = f((z− θ)/2), θ =
m(m+ 1)(2m+ 1)

3
. (4.51)

The support is {0, 2, 4, . . . ,m(m2 − 1)/3}.

4.4 Normal and Edgeworth approximations
Hotelling & Pabst (1936) prove the asymptotic normality of Spearman’s distance. We will use
Hoeffding’s theorem, our Theorem 3.3. From (4.3), we have

max{δ∗(i, j)2 | 1 6 i, j 6 m} = 4(m− ν)4 =
(m− 1)4

4
. (4.52)
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By (4.5), Var[DSpear] = m
2(m− 1)(m+ 1)2/36. Thus the ratio in (3.22), the maximum over the

variance, is of order 1/m, which goes to zero. The theorem then shows that

DSpear − E[DSpear]√
Var[DSpear]

−→ N(0, 1). (4.53)

David, Kendall, & Stuart (1951) present the 6-term Edgeworth expansion for the density
of Spearman’s ρ, calculated the first eight moments and cumulants by hand. Best & Roberts
(1975) implement the approximation, simplified somewhat, in FORTRAN. Maciak (2009), who
found the exact distribution form up to 25, compared a number of approximations to the exact
distribution for these m. See also Best & Roberts and Franklin (1988) for comparisons for
smaller m. Maciak recommends the Edgeworth expansion for common p-value calculations.

We compared L-term Edgeworth expansions of Spearman’s distance for L = 0, 2, 4, 6, 8, and
10 (an odd one is the same as the previous even one), using both the density and distribution
function versions of the expansions, for m between 5 and 24. (The sample size is N = 1.
Larger sample size yield better approximations.) Summary statistics included the maxima of
the errors for the density and the distribution function, as well as the maximum error for the
relative p-values for p-values above 0.00001. That is, with f̂ and F̂ being the estimates of the
true density f and true distribution function F, respectively, we calculate

MEdens = max
x∈X

|f̂(x) − f(x)|, MEDF = max
x∈X

|F̂(x) − F(x)|, (4.54)

and with pv(x) = min{F(x), 1 − F(x) + f(x)} and p̂v(x) = min{F̂(x), 1 − F̂(x) + f̂(x)} being the
p-value and its estimate,

MREpv = max
x∈X |pv(x)>.00001

|p̂v(x) − pv(x)|
pv(x)

. (4.55)

The estimates based on the expansion for the distribution function were overall somewhat
better than those for the density, so we focus on the former. As expected, the estimates
generally improve as m and L increase. Figure 4.1 compares the maximum errors in the
density estimation. We see that there is substantial improvement going from the normal
approximation to the 2-term expansion to the 4-term expansion. These is less separation
among the 6-, 8-, and 10-term expansions. The main driver of the error appears to be the
center of the distribution, where the true density is very spiky. Figure 4.4 shows the true
density for x near the mean of 2300. We see the heights jump up and down for consecutive
values of x. The smooth curve is the 10-term Edgeworth estimate, though the 6- and 8-term
estimates are virtually indistinguishable from the 10-term estimate. Figure 4.5 plots the same
data but as the error in the estimate, over the entire range of x. Note that the largest errors are
indeed in the center, and they errors jump between positive and negative for nearby values
of x. The conclusion is that no smooth density is going to be able follow closely the ups-and-
downs, hence higher L will not improve by much the maximum error in the density.

Figure 4.2 shows the maximum errors in estimating the distribution function. Here the
picture is a bit clearer, with substantial gains as we increase L. The approximations are quite
good, with maximum errors between 10−3 and 10−4 even for m = 10 and L = 4. For m = 24
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and L = 10, the error is about 10−6. The approximations are not very good for the p-values
according to the maximum relative errors (for p-values over 0.00001). See 4.3. For m 6 15
and any of the L, the relative error is over 1, and sometimes beween 10 and 100. For M > 20,
L = 10 has relative error less than 10%, and for m = 24, about 1%. Equation (4.56) exhibits the
errors in the L = 10 expansion for select values of m.

Considering all three types of error comparisons, it appears that the extra calculation in
the 10-term expansion is worth it, and reasonably good for larger m. If the relative errors in
the tails is not as important, even L = 4 is reasonable for m > 15, say.

5 10 15 20 22 24

Density 0.0231 0.000344 3.54×10−5 3.71×10−6 9.94×10−8 5.92×10−7

Distribution function 0.0175 0.000349 2.59×10−5 3.37×10−6 9.96×10−7 8.20×10−7

Relative, p-value 2.11 32.9 1.65 0.0852 0.0226 0.00741
(4.56)

4.5 R code

Below are functions for finding moments, cumulants, and Edgeworth expansions for the
distribution of Spearman’s distance. The first twelve moments, cumulants, and normal-
ized cumulants based on m are produced by the functions spearman_moments(m), spear-
man_cumulants(m), and spearman_normalized_cumulants(m), respectively. The function spear-
man_edgeworthf(x,m,L,n) calculates the values of the Edgeworth approximation to the density
at the values x, where L is the number of terms in the expansion, and n is the sample size. If
n > 1, then the values of x represent the sum of the distances,

∑n
i=1 dSpear(yi,ω), the yi being

the m-length rank vectors. The corresponding distribution-function-based Edgeworth esti-
mates are found by spearman_edgeworthF(x,m,L,n). The Edgeworth functions use the functions
edgef and edgeF from Section 2.5.

The functions for the moments and cumulants have many unnecessarily long integers.
Although I could have shortened them substantially, I decided to leave them as is since then
the formulas are exact (as calculated by Mathematica in Section 4.2.1), hence may be of interest
to some.

spearman_moments <− function(m) {
if(m==1) return(rep(0,12))
if(m==2) return(c(1,1,0,1,0,1,0,1,0,1,0,1))
mfactor <− (m−1)∗m^3∗(1 + m)^3
mu <− (m−1)∗m∗(1 + m)/6
s2 <− (m−1)∗m^2∗(1 + m)^2/36
if(m==3) return(c(mu,s2,0,96, 0, 1408, 0, 22016, 0, 350208, 0, 5595136))
m4 <− mfactor∗(72 + m∗(−35 + m∗(−38 + 25∗m)))/10800
if(m==4) return(c(mu,s2,0,m4, 0, 462400/3, 0, 38068480/3, 0, 3321472000/3, 0, 302100582400/3))
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Figure 4.1: The maximum error in estimating the density for Spearman’s ρ, as a function of
m. The values are log10 of the MEdens; the lines depend on L, the number of terms in the
Edgeworth expansion.
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Figure 4.2: The maximum error in estimating the distribution function for Spearman’s ρ, as a
function of m. The values are log10 of the MEDF; the lines depend on L, the number of terms
in the Edgeworth expansion.
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Figure 4.3: The maximum relative error in estimating the p-value (for p-values > 0.00001) for
Spearman’s ρ, as a function of m. The values are log10 of the MREpv; the lines depend on L,
the number of terms in the Edgeworth expansion.
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distribution. The smooth line is the estimate from the 10-term Edgeworth expansion.
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Figure 4.5: The error f̂(x) − f(x) of Spearman’s ρ for m = 24 as a function of x, where the
estimate is based on the 10-term Edgeworth expansion.

if(m==5) return(c(mu,s2,0,m4, 0, 5400000, 0, 1585227520, 0, 500904320000, 0, 166277056327680))
m6 <− mfactor∗(−28800 + m∗(44160 + m∗(54280 + m∗(−50081 + m∗(−22783 +

m∗(23818 + m∗(−178 + 49∗m∗(−89 + 25∗m))))))))/3810240
if(m==6) return(c(mu,s2,0,m4, 0,m6, 0, 386558298581/5, 0, 68673221950725, 0, 323462714247836541/5))
if(m==7) return(c(mu,s2,0,m4, 0,m6, 0, 30010131730432/15, 0, 12656746257956864/3, 0,

142711169198502510592/15))
m8 <− mfactor∗(40642560 + m∗(−51867648 + m∗(−74721024 + m∗(110888256 + m∗(71871632 +

m∗(−79689881 + m∗(−27330110 + m∗(30402746 + m∗(2142858 + m∗(−6275976 +
m∗(1090534 + m∗(451718 + 1225∗m∗(−178 + 25∗m)))))))))))))/489888000

if(m==8) return(c(mu,s2,0,m4, 0,m6, 0, m8, 0, 145340586776641536, 0, 24283028012629343404032/35))
if(m==9) return(c(mu,s2,0,m4, 0,m6, 0, m8, 0, 3235097260221696000, 0, 208492707703894340198400/7))
m10 <− mfactor∗(−188116992000 + m∗(198866534400 + m∗(414838609920 + m∗(−433387155456 +

m∗(−404189047296 + m∗(442652192448 + m∗(251159442832 + m∗(−237499131899 +
m∗(−85964555005 + m∗(78306584239 + m∗(12607819481 + m∗(−16568926574 +
m∗(675454398 + m∗(1946453438 + m∗(−475483358 + 121∗m∗(−426751 +
m∗(368743 + 1225∗m∗(−61 + 5∗m))))))))))))))))))/47421158400

if(m==10) return(c(mu,s2,0,m4, 0,m6, 0, m8, 0, m10, 0, 5914520439997407834095335/7))
if(m==11) return(c(mu,s2,0,m4, 0,m6, 0, m8, 0, m10, 0, 601466802137944564241260544/35))
m12 <− mfactor∗(19321772487671808000 +m∗(−16809105623907041280 + m∗(−47949509758034903040 +

m∗(36488300660503068672 + m∗(54419976845675882496 + m∗(−36488654366312540160 +
m∗(−36118404438893610240 + m∗(23517322130866345792 + m∗(16323753091762066456 +
m∗(−9960665856120429375 + m∗(−4862551541725722430 + m∗(2911340308818055007 +
m∗(854178582308599116 + m∗(−607856933067242975 + m∗(−59540744251778210 +
m∗(85428878340287847 + m∗(−7210452777013984 +
m∗(−6425184317282485 + m∗(1832998897635870 + 169∗m∗(77461248253 + 5929∗m∗(−100938884 +
25∗m∗(980379 + 1225∗m∗(−94 + 5∗m)))))))))))))))))))))))/32129559221760000

c(mu,s2,0,m4,0,m6,0,m8,0,m10,0,m12)
}
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spearman_cumulants <− function(m) {
if(m==1) return(rep(0,12))
if(m==2) return(c(1,1,0,−2, 0, 16, 0, −272, 0, 7936, 0, −353792))
mfactor <− (m−1)∗m^3∗(1 + m)^3
mu <− (m−1)∗m∗(1 + m)/6
s2 <− (m−1)∗m^2∗(1 + m)^2/36
if(m==3) return(c(mu,s2, 0, −96, 0, 5248, 0, −615936, 0, 124028928, 0, −38150168576))
k4 <− −mfactor∗(−36 + m∗(5 + 19∗m))/5400
if(m==4) return(c(mu,s2,0,k4, 0, 2147200/9, 0, −884610560/9, 0, 210287872000/3, 0,

−229566520729600/3))
if(m==5) return(c(mu,s2,0,k4, 0, 4320000, 0, −4536916480, 0, 8338196480000, 0, −23573413833400320))
k6 <− mfactor∗(−1800 + 2760∗m + 4054∗m^2 − 2637∗m^3 − 2603∗m^4 + 723∗m^5 + 583∗m^6)/238140
if(m==6) return(c(mu,s2,0,k4, 0,k6, 0, −501636997456/5, 0, 393383544180480, 0,

−11925767764861042176/5))
if(m==7) return(c(mu,s2,0,k4, 0,k6, 0, −6781406220288/5, 0, 30034763619352576/3, 0,

−5165787362075227783168/45))
k8 <− −mfactor∗(−846720 + m∗(1080576 + m∗(1616688 + m∗(−2358048 + m∗(−1800776 +

m∗(1690125 + m∗(1012323 + m∗(−578442 + m∗(−304254 + m∗(83709 + 41939∗m))))))))))/10206000
if(m==8) return(c(mu,s2,0,k4, 0,k6, 0, k8, 0, 163576921879461888, 0, −113479202433204782825472/35))
if(m==9) return(c(mu,s2,0,k4, 0,k6, 0, k8, 0, 1912729128097536000, 0, −61266217520498004172800))
k10 <− mfactor∗(−244944000 + m∗(258940800 + m∗(546557760 + m∗(−566728128 + m∗(−553076496 +

m∗(587593488 + m∗(380118062 + m∗(−321580899 + m∗(−166918373 + m∗(105303339 +
m∗(46553241 + m∗(−20933373 + m∗(−8319131 + m∗(2008773 + 784937∗m))))))))))))))/61746300

if(m==10) return(c(mu,s2,0,k4, 0,k6, 0, k8, 0, k10, 0, −5917889802167831516695040/7))
if(m==11) return(c(mu,s2,0,k4, 0,k6, 0, k8, 0, k10, 0,−45297198502217473065852928/5))
k12 <− −mfactor∗(−12579278963328000 + m∗(10943428140564480 + m∗(31369257343520640 +

m∗(−23770376057843712 + m∗(−36082848357744768 + m∗(23811613081956480 +
m∗(24713091021082648 + m∗(−15433840924652480 + m∗(−11937616420633052 +
m∗(6594347489361289 + m∗(4097150586509455 + m∗(−1924083590730644 +
m∗(−978784350626932 + m∗(396318210499022 + m∗(164330326104746 + m∗(−54702296967364 +
m∗(−19347867651448 + m∗(3883306078529 + 1316835592311∗m))))))))))))))))))/20917681785000

c(mu,s2,0,k4,0,k6,0,k8,0,k10,0,k12)
}

spearman_normalized_cumulants <− function(m) {
if(m<2) return(rep(0,12))
fc <− spearman_cumulants(m)
sigma <− sqrt(fc[2])
c(0,1,fc[3:12]/sigma^(3:12))

}

spearman_edgeworthf <− function(x,m,L,n=1) {
mu <− n∗(m−1)∗m∗(1 + m)/6
sigma <− mu/sqrt(n∗(m−1))
kum <− spearman_normalized_cumulants(m)
z <− (x−mu)/sigma
dnorm(z)∗edgef(z,L,kum,n)∗2/sigma

}

spearman_edgeworthF <− function(x,m,L,n=1) {
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mu <− n∗(m−1)∗m∗(1 + m)/6
sigma <− mu/sqrt(n∗(m−1))
kum <− spearman_normalized_cumulants(m)
z <− (x−mu+1)/sigma
pnorm(z) − dnorm(z)∗edgeF(z,L,kum,n)

}
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Chapter 5

The footrule

In this section we consider the distribution of the footrule distance:

DFoot ≡ dFoot(Y ,ω) =
m∑
i=1

|Yi −ωi|. (5.1)

As before, we take ω = (1, 2, . . . ,m), and suppose Y ∼ Uniform(Pm). To find the exact null
distribution, we could use the splitting method as in Section 10.2 (see Franklin, 1988), but in
Section 5.3 we present a clever algorithm developed in Sen and Salama (1983) and Salama and
Quade (1990) that allows us to calculate the distribution quickly for m up to 350. Section 5.6
exhibits the Edgeworth expansion approximation to the distribution for larger m.

5.1 First two moments

The first two moments appear to be first presented in Spearman (1904), who attributed the
calculation of the variance to Professor Hausdorff. Ury & Kleinecke (1979) note that these
formulas were proved in Kleinecke, Ury, & Wagner (1962). Salama & Quade (1990) present
the third moment.

For the footrule, we note that δFootrule(i, j) = |i− j| = 2 max{i, j}− i− j, hence we can write
the distance as in (3.3) with

∆Footrule = 2M − 1 ′ω −ω ′1, Mij = max{i, j}. (5.2)

Next, let K be the m×m matrix with 1’s on the diagonal and above, and 0’s elsewhere:

K =


1 1 1 · · · 1
0 1 1 · · · 1
0 0 1 · · · 1
...

...
... . . . ...

0 0 0 · · · 1

 . (5.3)

47
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Then KK ′ has ijth element m+ 1 − max{i, j}, i.e.,

KK ′ =


m m− 1 m− 2 · · · 1

m− 1 m− 1 m− 2 · · · 1
m− 2 m− 2 m− 2 · · · 1

...
...

... . . . ...
1 1 1 · · · 1

 = (m+ 1)1 ′1−M . (5.4)

We obtain
∆Footrule = 2(m+ 1)1 ′1− 1 ′ω −ω ′1− 2KK ′. (5.5)

The distance can then be written

dFoot(y,ω) = trace(Qy∆Foot)

= 2m(m+ 1) − 2ω1 ′ − 2 trace(QyKK ′)
= m(m+ 1) − 2 trace(QyKK ′), (5.6)

since ω1 ′ =
∑m
i=1 i = m(m+ 1)/2.

Before launching into the calculations, we present for reference the sums of the first four
powers of 1, . . . ,m:

n σ
(n)
m ≡

∑m
i=1 i

n

1 m(m+ 1)/2
2 m(m+ 1)(2m+ 1)/6
3 m2(m+ 1)2/4
4 m(m+ 1)(2m+ 1)(3m2 + 3m− 1)/30

(5.7)

From (5.5),

H∆FootH = −2HKK ′H . (5.8)

To find the mean, using the second line of (3.17), we have

E[dFoot(Y ,ω)] = −trace(H∆FootH)

= 2 trace(HKK ′H) = 2 trace(HKK ′). (5.9)

Writing out the H yields

HKK ′ =KK ′ −
1
m

1 ′1KK ′. (5.10)

From (5.4) we see that the diagonals of KK ′ are m,m− 1, . . . , 1, and from (5.3) that 1K = ω.
Thus

E[dFoot(Y ,ω)] = 2 trace(HKK ′) = 2σ(1)m − 2
1
m
σ
(2)
m

= m(m+ 1) −
1
3
(m+ 1)(2m+ 1)

=
m2 − 1

3
. (5.11)
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For the variance, we can similarly use (3.17) to show that

Var[dFoot(Y ,ω)] =
1

m− 1
trace((H∆FootH)2)

=
4

m− 1
trace(HKK ′HKK ′). (5.12)

From (5.10),

HKK ′HKK ′ =KK ′KK ′ −
1
m

1 ′1KK ′KK ′

−
1
m
KK ′1 ′1KK ′ +

1
m21

′1KK ′1 ′1KK ′, (5.13)

hence using 1K = ω again, and with some more manipulations,

trace(HKK ′HKK ′) = trace(KK ′KK ′) −
2
m
ωK ′Kω ′ +

1
m2 (ωω

′)2. (5.14)

We need to find the terms in the final expression of (5.14). The first term is the sum of
squares of the elements in KK ′ in (5.4). We can see that for each i, row i has i elements
equal to m− i+ 1, as does column i. Since we are counting element ii twice, there are 2i− 1
elements equal to m− i+ 1 in the matrix. Thus using (5.7) and some algebra

trace(KK ′KK ′) =
m∑
i=1

(2i− 1)(m− i+ 1)2

=

m∑
i=1

(2m+ 1 − 2i)i2

= (2m+ 1)σ(2)m − 2σ(3)m

=
1
6
m(m+ 1)((2m+ 1)2 − 3m(m+ 1))

=
1
6
m(m+ 1)(m2 +m+ 1). (5.15)

For the second term, note that

(ωK ′)i =
m∑
j=i

j = (m− i+ 1)(i− 1) +
1
2
(m− i+ 1)(m− i+ 2). (5.16)
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Thus

ωK ′Kω ′ =
m∑
i=1

((m− i+ 1)(i− 1) + (m− i+ 1)(m− i+ 2)/2)2

=

m∑
i=1

(i(m− i) + i(i+ 1)/2)2

=
1
4

m∑
i=1

((2m+ 1)i− i2)2

=
1
4

m∑
i=1

((2m+ 1)2i2 − 2(2m+ 1)i3 + i4)

=
1
4
((2m+ 1)2σ

(2)
m − 2(2m+ 1)σ(3)m + σ

(4)
m )

=
1

30
m(m+ 1)(2m+ 1)(2m2 + 2m+ 1). (5.17)

For the third term, we have

(ωω ′)2 = (σ
(2)
m )2 =

1
36
m2(m+ 1)2(2m+ 1)2. (5.18)

Then from (5.12) and (5.14),

Var[dFoot(Y ,ω)] =
4

m− 1
(m+ 1)

(
1
6
m(m2 +m+ 1) −

1
15

(2m+ 1)(2m2 + 2m+ 1)

+
1

36
(m+ 1)(2m+ 1)2

)
=

4
m− 1

(m+ 1)
1

180
(2m3 − 2m2 + 7m− 7)

=
1

45
(m+ 1)(2m2 + 7). (5.19)

5.2 The Sen-Salama decomposition
Sen & Salama (1983) developed a clever decomposition of the footrule that leads to a fast
algorithm for calculating the exact null distribution (see Section 5.3), and aids in finding
higher moments.

For i = 1, . . . ,m, define

Ti = #{yj 6 i | j = 1, . . . , i} =
i∑
j=1

I[yj 6 i], (5.20)

and let S be their sum

S =

m∑
i=1

Ti. (5.21)
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(Note that Tm ≡ m.) This statistic is equivalent to the footrule statistic DFoot as shown in
Theorem 1 of Sen and Salama, which we show now:

Lemma 5.1. For DFoot in (5.1) and S in (5.21),

DFoot = m(m+ 1) − 2S. (5.22)

Proof. Consider the matrix K ′Q ′y for K in (5.3). Its ijth element is I[yj 6 i]. Multiplying on
the right by K finds the cumulative sums of the rows:

(K ′Q ′yK)ij =

j∑
a=1

I[ya 6 i]. (5.23)

In particular, the diagonals of K ′Q ′yK are the Ti. Thus

S = trace(K ′Q ′yK) = trace(KK ′Q ′y) = trace(QyKK ′), (5.24)

and (5.22) follows from (5.6).

Sen & Salama (1983) show that marginally each Ti is hypergeometric, since we are choosing
i of the rankings out of m, and counting how many are less than or equal to i. Thus

E[Ti] =
i2

m
and Var[Ti] =

i2(m− i)2

m2(m− 1)
. (5.25)

They also find the pairwise joint distribution of the Ti’s as well as their covariances, and third
moment of S. The latter we show in Section 5.4.1. The covariance matrix of T = (T1, . . . , Tm)
can be obtained by applying (3.7) and (3.13) to the matrix in (5.23),

Cov[K ′Q ′yK] =
1

m− 1
K ′HK ⊗K ′HK. (5.26)

Writing out the H , we have

K ′HK =K ′K −
1
m
K ′1 ′1K

=K ′K −
1
m
ω ′ω. (5.27)

Note that (K ′K)ij = min{i, j}. Thus since T = diag(K ′Q ′yK), (3.12) shows that

Cov[Ti, Tj] = (K ′HK)2
ij =

1
m− 1

(
min{i, j}−

1
m
ij

)2

=
(m ·min{i, j}− ij)2

m2(m− 1)
. (5.28)

Note that from (5.22), (5.11) and (5.19),

E[S] =
1
6
(m+ 1)(2m+ 1) and Var[S] =

1
180

(m+ 1)(2m2 + 7). (5.29)
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5.3 Exact distribution
The task here is to find the exact distribution of S. Consider the joint distribution of (T1, . . . , Tm).
Theorem 2 and Lemma 3 of Sen and Salama (1983) show that the Ti’s form a Markov chain,
and present the conditional distributions of Ti given Ti−1, which we present in Lemma 5.2.
Finally, we use convolutions to obtain the distribution of S, from which that for F is easily
found.

First, some preliminaries. Clearly 0 6 Ti 6 i, but we also need that

#{yj 6 i | j = 1, . . . , i}+ #{yj 6 i | j = i+ 1, . . . ,m} = i, (5.30)

which implies that i− Ti 6 m− i, i.e.,

max{0,m− 2i} 6 Ti 6 i. (5.31)

Also, T1 = I[Y1 = 1], hence is Bernoulli( 1
m ).

Lemma 5.2. For each i = 1, . . . ,m − 1, if the rj’s and r are such that the conditioning event has
positive probability,

P[Ti+1 = r+ k | T1 = r1, . . . , Ti−1 = ri−1, Ti = r] = P[Ti+1 = r+ k | Ti = r]

=



(m−2i+r)(m−2i+r−1)
(m−i)2 if k = 0

(m−2i+r)(2i−2r+1)
(m−i)2 if k = 1

(i−r)2

(m−i)2 if k = 2

0 otherwise

. (5.32)

Proof. Fix i = 1, . . . ,m− 1, and for each h = 1, . . . , i, let Y∗h = Yh if Yh 6 i, and Y∗h = i+ 1 if
Yh > i+ 1. Then for j 6 i+ 1,

Tj ≡ #{yh 6 j |h = 1, . . . , j} = #{y∗h 6 j |h = 1, . . . , j}, (5.33)

since in the definition the exact value of yh is irrelevant if it is more than i. We consider the
conditional distribution

Ti+1 − Ti |Y
∗
1 = y∗1, . . . ,Y∗i = y

∗
i . (5.34)

The difference can be written

#{yj 6 i+ 1 | j = 1, . . . , i+ 1}− #{yj 6 i | j = 1, . . . , i} = B+C, (5.35)

where B and C are the two 0/1 functions

B ≡ I[yi+1 6 i+ 1] and C ≡ #{yj = i+ 1 | j = 1, . . . , i}. (5.36)

(The C is in {0, 1} since the yj’s are distinct.) Thus Ti+1 − Ti can take on only the values 0, 1,
and 2. We will find the conditional distribution of C, and the conditional distribution of B
given C, conditioning on the Y∗j ’s. Let A be the conditioning event

A = {Y∗1 = y∗1, . . . ,Y∗i = y
∗
i }. (5.37)
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Start with C, and condition as in (5.34). Let r = #{y∗j 6 i | j = 1, . . . , i}(= Ti). Then there are
i− r of the y∗j ’s equal to i+ 1, which means i− r of the yj’s are greater than i. Then if C = 0,
we have to have all i− r of those greater than i+ 1. Thus (since there are m− i values greater
than i and m− i− 1 greater than i+ 1),

P[C = 0 |A] =

(
m−i−1
i−r

)(
m−i
i−r

) =
m− 2i+ r
m− i

, (5.38)

and, subtracting from 1,

P[C = 1 |A] =
i− r

m− i
. (5.39)

Next look at B conditioning on C and A. To find

P[B = 0 |C = 0,A] = P[Yi+1 > i+ 1 |C = 0,A], (5.40)

note than with C = 0, i− r of the first i yj’s are greater than i+ 1. Thus there are (m− i− 1) −
(i− r) choices for Yi+1 that exceed i+ 1, out of m− i remaining possibilities. Thus

P[B = 0 |C = 0,A] =
m− 2i+ r− 1

m− i
⇒ P[B = 1 |C = 0,A] =

i− r+ 1
m− i

. (5.41)

Similarly, if C = 1, one of the first yj’s has taken i+ 1, hence Yi+1 has one more value over
i+ 1 to choose from, and

P[B = 0 |C = 1,A] =
m− 2i+ r
m− i

⇒ P[B = 1 |C = 1,A] =
i− r

m− i
. (5.42)

Assembling the probabilities, we have that

P[Ti+1 − Ti = 0 |A] = P[B = 0 |C = 0,A]P[C = 0 |A] =
(m− 2i+ r− 1)(m− 2i+ r)

(m− i)2 , (5.43)

P[Ti+1 − Ti = 2 |A] = P[B = 1 |C = 1,A]P[C = 1 |A] =
(i− r)2

(m− i)2 , (5.44)

and, subtracting those from 1,

P[Ti+1 − Ti = 1 |A] =
(m− 2i+ r)(2i− 2r+ 1)

(i− r)2 . (5.45)

Note that the conditional probabilities in (5.43) through (5.45) are functions of r alone,
hence they depend on (Y∗1 , . . . ,Y∗i ) through only Ti. Thus we have the same conditional prob-
abilities when conditioning on Ti. The same can be said about (T1, . . . , Ti). That is,

P[Ti+1 − Ti = k |A] = P[Ti+1 − Ti = k | T1 = r1, . . . , Ti−1 = ri−1, Ti = r]
= P[Ti+1 − Ti = k | Ti = r]. (5.46)

Thus (5.43) through (5.46) prove (5.32).
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To obtain the distribution of S = T1 + · · · + Tm, we use convolutions, but need to carry
along both the Ti and the partial sums Si = T1 + · · ·+ Ti’s because of the dependence of the
Ti’s. We sequentially find the joint distributions of (Ti,Si), i = 1, . . . ,m. Then S = Sm, and
since Tm ≡ m, the marginal distribution of S is essentially the same as the joint of (Tm,S).

Start with (T1,S1), where S1 = T1, hence P[T1 = 0,S1 = 0] = m−1
m and P[T1 = 1,S1 = 1] = 1

m .
Suppose we have the joint distribution P[Ti = r,Si = s]. Then Ti+1 may be k = 0, 1, or 2
larger than Ti, in which case Si+1 will be Ti + k larger than Si. Thus by the Markov property
in Lemma 5.2,

P[Ti+1 = r+ k,Si+1 = s+ r+ k | Ti = r,Si = s] = P[Ti+1 = r+ k | Ti = r], (5.47)

which we know from (5.32). The ith convolution is then

P[Ti+1 = r∗,Si+1 = s∗] =
2∑
k=0

P[Ti+1 = r∗,Si+1 = s∗ | Ti = r
∗ − k,Si = s∗ − r∗ − k]

× P[Ti = r∗ − k,Si = s∗ − r∗ − k]

=

2∑
k=0

P[Ti+1 = r∗ | Ti = r
∗ − k]P[Ti = r

∗ − k,Si = s∗ − r∗ − k]. (5.48)

We find these values for i = 2, . . . ,m. Then at the end we have from (5.22)

P[DFoot = x] = P

[
Sm =

m(m+ 1) − x
2

, Tm = m

]
, x = 0, 2, . . . ,

⌊
m2

2

⌋
. (5.49)

5.4 Higher moments
We follow an approach similar to that in Section 4.2 for Spearman’s ρ distance. First, note that
by (5.22), the central moments of the footrule are related to those of S via

E[(DFoot − E[DFoot])
n] = (−2)n E[(S− E[S])n]. (5.50)

We will first find E[Sn], then calculate the central moment from that and the previous mo-
ments.

We have Sn = (
∑
Ti)

n as in (5.21), and expand the summation similar to that in (4.11),
except that because the distribution of the Ti’s is not permutation invariant, we decompose
the sum into sums over ordered indices. That is, we write

E[Sn] =
∑

n∈ICn,m

(
n

n1, . . . ,nr

)
σ(n). (5.51)

where ICn,m is the set of integer compositions of n with at most m components, and

σ(n) =
∑
· · ·
∑

j1<j2<···<jr

E[Tn1
j1
T
n2
j2
· · · Tnrjr ]. (5.52)
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(Recall that a composition of n is a vector n = (n1, . . . ,nr) of positive integers than sum to n.)
Next, for each monomial in (5.52), write the Ti’s as sums of indicator functions as in (5.20),

and expand into a multiple sum of products of the indicator functions:

T
n1
j1
· · · Tnrjr =

i1∑
a1=1

· · ·
in∑
an=1

I[Ya1 6 i1] · · · I[Yan 6 in], (5.53)

where on the right-hand side, there are equalities among the ik’s determined by the jk’s.
Specifically, let j = (j1, . . . , jr), and define the function

i(n, j) = (j1, . . . , j1, j2, . . . , j2, . . . , jr, . . . , jr), where there are nk of the jk’s. (5.54)

Then in (5.53), (i1, . . . , in) = i(n, j).
Now split the overall sum into summations determined by the pattern of the equalities

among the indices a = (a1, . . . ,an). We again use the set partitions of {1, . . . ,n} as in (4.9) and
(4.10). Then

T
n1
j1
· · · Tnrjr =

∑
K∈SPn,m

h(n,K), (5.55)

where

h(n,K) =

i1∑
a1=1

· · ·
in∑
an=1

k(a)=K

I[Ya1 6 i1] · · · I[Yan 6 in]. (5.56)

Here, equalities among the ik’s are defined by the n, and equalities among the ak’s are defined
by the K. With K = (K1, . . . ,Ku), consider the component Kk, and the set of i’s in Kk. Their
associated j’s are then

{i(n, j)i | i ∈ Kk}. (5.57)

The upper limit of the index ai in its summation is i(n, j)i. Then since i(n, j)i is nondecreas-
ing in i, the upper limit of all the indices with i ∈ Kk must be that of the smallest such i. We
can then write

h(n,K, j) =

i(n,j)min(K1)∑
amin(K1)

=1

· · ·
i(n,j)min(Ku)∑
amin(Ku)=1

distinct

I[Ya1 6 i1] · · · I[Yan 6 in]. (5.58)

The indices are now distinct because they are from different components of K. The same idea
shows that if we group the indicator functions in each summand according to the Kk, we find
the summand is

u∏
k=1

∏
i∈Kk

I[Yai 6 i(n, j)i] =
u∏
k=1

I[Yamin(Kk)
6 i(n, j)min(Kk)]. (5.59)

To clean up the notation a bit, for given n and K, let j∗k = i(n, j)min(Kk). Then

E[h(n,K, j)] =
j∗1∑
b1=1

· · ·
j∗u∑

bu=1
distinct

E[I[Yb1 6 j
∗
1] · · · I[Ybu 6 j∗u]]. (5.60)



DRAFT

56 CHAPTER 5. THE FOOTRULE

By the exchangeability of the distribution of Y , the expectations of the summands are equal.
Because the j∗k’s are in nondecreasing order, the number of summands can be calculated as
j∗1(j
∗
2 − 1) · · · (j∗u − u+ 1). Since the Ybk’s are also distinct integers, that last value is also the

numerator of the expected value of the summand. That is,

E[h(n,K, j)] =

(
j∗1(j
∗
2 − 1) · · · (j∗u − u+ 1)

)2

m(m− 1) · · · (m− u+ 1)
. (5.61)

Now we have

E[Sn] =
∑

n∈ICn,m

(
n

n1, . . . ,nr

) ∑
· · ·
∑

16j1<···<jr6m

∑
K∈SPn,m

E[h(n,K, j)]

=
∑

n∈ICn,m

(
n

n1, . . . ,nr

) ∑
K∈SPn,m

λ(n,K), (5.62)

where

λ(n,K) =
∑
· · ·
∑

16j1<···<jr6m

(
j∗1(j
∗
2 − 1) · · · (j∗u − u+ 1)

)2

m(m− 1) · · · (m− u+ 1)
. (5.63)

The interchanging of summations in (5.62) is valid because the partitions we sum over are
given by m, independently of n. The λ’s are the computationally most complex part of the
calculations. There are a numerous redundancies among them. For example, with n = 4,
there are 15 possible ordered set partitions K, and 8 combinations, but only 33 different λ’s.

5.4.1 Third central moment

Sen & Salama (1983) present the third central moment of the footrule, which they find using
their decomposition. Here we present a proof, and similarly find the fourth moment in Section
5.4.2.

Assume that m > n, where n = 3, so that the combinations n are (3), (2, 1), (1, 2), and
(1, 1, 1), and from (5.51),

E[S3] = σ(3) + 3σ(2, 1) + 3σ(1, 2) + 6σ(1, 1, 1). (5.64)

The set partitions K are (123), (12, 3), (13, 2), (1, 23) and (1, 2, 3). For each (n, K) pair, we need
to find the j∗’s in terms of the j’s. In the next table, the entries are j∗1, . . . , j∗r .

n (3) (2, 1) (1, 2) (1, 1, 1)
j (j1) (j1, j2) (j1, j2) (j1, j2, j3)

i(n, j) (j1, j1, j1) (j1, j1, j2) (j1, j2, j2) (j1, j2, j3)

K

(123) j1 j1 j1 j1
(12, 3) j1, j1 j1, j2 j1, j2 j1, j3
(13, 2) j1, j1 j1, j1 j1, j2 j1, j2
(1, 23) j1, j1 j1, j1 j1, j2 j1, j2
(1, 2, 3) j1, j1, j1 j1, j1, j2 j1, j2, j2 j1, j2, j3

(5.65)
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For example, take the n = (2, 1) combination, which correspond to T2
j1
Tj2 = Tj1Tj1Tj2 , so that

i(n, j) = i((2, 1), (j1, j2)) = (j1, j1, j2). For each ordered set partition K, we consider just the
minima for the component sets. Thus K = (123) gives just the index “1,” which applied to
i(n, j) yields “j1.” For K = (12, 3) we find the minima (1, 3), which in turn picks out the first
and third components of i(n, j), i.e., “j1, j2.”

Now for each column, we sum each entry’s (5.61) over 1 6 j1 < · · · < jr 6 m to find the λ
in (5.63), then add up over partitions. For the first column, the middle three entries are equal,
so we obtain

m∑
j1=1

E[T3
j1
] =

m∑
j1=1

j21
m

+ 3
m∑
j1=1

(j1(j1 − 1))2

m(m− 1)
+

m∑
j1=1

(j1(j1 − 1)(j1 − 2))2

m(m− 1)(m− 2)
. (5.66)

The (2, 1) and (1, 2) columns both sum over j1 < j2, but have slightly different sets of sum-
mands:

∑∑
16j1<j26m

E[T2
j1
Tj2 ] =

∑∑
16j1<j26m

j21
m

+
∑∑

16j1<j26m

(j1(j2 − 1))2

m(m− 1)

+ 2
∑∑

16j1<j26m

(j1(j1 − 1))2

m(m− 1)
+
∑∑

16j1<j26m

(j1(j1 − 1)(j2 − 2))2

m(m− 1)(m− 2)
, (5.67)

and

∑∑
16j1<j26m

E[Tj1T
2
j2
] =

∑∑
16j1<j26m

j21
m

+ 3
∑∑

16j1<j26m

(j1(j2 − 1))2

m(m− 1)
+
∑∑

16j1<j26m

(j1(j2 − 1)(j2 − 2))2

m(m− 1)(m− 2)
.

(5.68)

Finally,

∑
· · ·
∑

16j1<j2<j36m

E[Tj1Tj2Tj3 ] =
∑
· · ·
∑

16j1<j2<j36m

j21
m

+
∑
· · ·
∑

16j1<j2<j36m

(j1(j3 − 1))2

m(m− 1)

+ 2
∑
· · ·
∑

16j1<j2<j36m

(j1(j2 − 1))2

m(m− 1)
+
∑
· · ·
∑

16j1<j2<j36m

(j1(j2 − 1)(j3 − 2))2

m(m− 1)(m− 2)
. (5.69)

Note that although all columns sum over j21/m in the first row, the summation depends on r,
the number of indices summed over.

Here we turn to the computer algebra system again. The various λ’s are then easy to find,
and we assemble them as in (5.66) to (5.69), then use (5.62) to find that

E[S3] =
(m+ 1)(m+ 2)(280m4 + 504m3 + 452m2 + 315m+ 153)

7560
. (5.70)
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Then the third central moment is by (5.11) and (5.19),

E[(S− E[S])3] = E[S3] − 3E[S]Var[S] − E[S]3

= E[S3] − 3
(m+ 1)(2m+ 1)

6
(m+ 1)(2m2 + 7)

180
−

(
(m+ 1)(2m+ 1)

6

)3

=
(m+ 1)(m+ 2)

(
2m2 + 31

)
3780

. (5.71)

Thus by (5.65),

E[(DFoot − E[(DFoot])
3] = −

2(m+ 1)(m+ 2)
(
2m2 + 31

)
945

. (5.72)

5.4.2 Fourth central moment

We turn to the fourth moment. For (5.51), we need the compositions of n = 4, of which there
are 2n−1 = 8. Now we assume that m > 4. We find that

E[S4] = σ(4) + 4σ(3, 1) + 4σ(1, 3) + 6σ(2, 2) + 12σ(2, 1, 1)
+ 12σ(1, 2, 1) + 12σ(1, 1, 2) + 24σ(1, 1, 1, 1). (5.73)

Table 5.1 has the sets of j∗ for the pairs of (n,K). After assembling all the calculations
analogous to those in (5.66) through (5.69), we find with the computer algebra system that

E[S4] =
1

226800
(m+ 1)(2800m7 + 15680m6 + 34684m5

+ 45500m4 + 46315m3 + 37775m2 + 22086m+ 7920), (5.74)

and using previous moments,

E[(S− E[S])4] =
(m+ 1)(28m5 + 180m3 + 160m2 + 887m+ 1265)

75600
. (5.75)

Finally, multiplying by 24, we find

E[(DFoot − E[(DFoot])
4] = 16E[(S− E[S])4]

=
(m+ 1)(28m5 + 180m3 + 160m2 + 887m+ 1265)

4725
. (5.76)

5.5 Mathematica code
The key functions here parallel those for Spearman’s distance in Section 4.2.1, finding the nth

raw and central moments, and the regular and normalized cumulants. Again, n must be a
nonnegative integer and m either a positive integer or symbol. Also, if m is a symbol, the
formula is valid for m > n.
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n (4) (3, 1) (1, 3) (2, 2)
i(n, j) (j1, j1, j1, j1) (j1, j1, j1, j2) (j1, j2, j2, j2) (j1, j1, j2, j2)

(1234) j1 j1 j1 j1
(123, 4) j1, j1 j1, j2 j1, j2 j1, j2
(124, 3) j1, j1 j1, j1 j1, j2 j1, j2
(134, 2) j1, j1 j1, j1 j1, j2 j1, j1
(1, 234) j1, j1 j1, j1 j1, j2 j1, j1
(12, 34) j1, j1 j1, j1 j1, j2 j1, j2
(13, 24) j1, j1 j1, j1 j1, j2 j1, j1
(14, 23) j1, j1 j1, j1 j1, j2 j1, j1
(12, 3, 4) j1, j1, j1 j1, j1, j2 j1, j2, j2 j1, j2, j2
(13, 2, 4) j1, j1, j1 j1, j1, j2 j1, j2, j2 j1, j1, j2
(14, 2, 3) j1, j1, j1 j1, j1, j1 j1, j2, j2 j1, j1, j2
(1, 23, 4) j1, j1, j1 j1, j1, j2 j1, j2, j2 j1, j1, j2
(1, 24, 3) j1, j1, j1 j1, j1, j1 j1, j2, j2 j1, j1, j2
(1, 2, 34) j1, j1, j1 j1, j1, j1 j1, j2, j2 j1, j1, j2
(1, 2, 3, 4) j1, j1, j1, j1 j1, j1, j1, j2 j1, j2, j2, j2 j1, j1, j2, j2

n (2, 1, 1) (1, 2, 1) (1, 1, 2) (1, 2, 3, 4)
i(n, j)→ (j1, j1, j2, j3) (j1, j2, j2, j3) (j1, j2, j3, j3) (j1, j2, j3, j4)

(1234) j1 j1 j1 j1
(123, 4) j1, j3 j1, j3 j1, j3 j1, j4
(124, 3) j1, j2 j1, j2 j1, j3 j1, j3
(134, 2) j1, j1 j1, j2 j1, j2 j1, j2
(1, 234) j1, j1 j1, j2 j1, j2 j1, j2
(12, 34) j1, j2 j1, j2 j1, j3 j1, j3
(13, 24) j1, j1 j1, j2 j1, j2 j1, j2
(14, 23) j1, j1 j1, j2 j1, j2 j1, j2
(12, 3, 4) j1, j2, j3 j1, j2, j3 j1, j3, j3 j1, j3, j4
(13, 2, 4) j1, j1, j3 j1, j2, j3 j1, j2, j3 j1, j2, j4
(14, 2, 3) j1, j1, j2 j1, j2, j2 j1, j2, j3 j1, j2, j3
(1, 23, 4) j1, j1, j3 j1, j2, j3 j1, j2, j3 j1, j2, j4
(1, 24, 3) j1, j1, j2 j1, j2, j2 j1, j2, j3 j1, j2, j3
(1, 2, 34) j1, j1, j2 j1, j2, j2 j1, j2, j3 j1, j2, j3
(1, 2, 3, 4) j1, j1, j2, j3 j1, j2, j2, j3 j1, j2, j3, j3 j1, j2, j3, j4

Table 5.1: The indices for (5.63) to find the fourth moment of S.
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There are a number of helper function. The function integerCompositions[n,m] finds the list
of integer compositions of n with at most m components, ICn,m. Mathematica doesn’t seem to
have a built-in such function, as they do have for integer partitions. The function indicesO[r,m]
constructs the indices for the multiple summation in (5.63). The (numerators of the) sum-
mands are found using smnd[hv], where hv is a vector that indicates which indices j appear,
so that hv = 1,1,3,5 represents the product j1(j1 − 1)(j3 − 2)(j5 − 3). Function lambda[nn,sp,m]
calculates λ(n,K) in (5.63), where nn is the integer combination n and sp is the set partition
K. Function footruleSRawMoment[n,m] finds the nth raw moment of S, calling upon the two
functions form being an integer or symbol. The functions setPartitions and denom are the same
as for Spearman’s distance.

Needs["Combinatorica‘"]

setPartitions[n_,m_] := Select[Combinatorica‘SetPartitions[n],Function[Length[#1]<=m]];
integerCompositions[n_] := Table[Append[p,n]−Prepend[p,0],{p,Subsets[Range[n−1]]}];
integerCompositions[n_,m_] := Select[Table[Append[p, n] − Prepend[p, 0],

{p, Subsets[Range[n − 1]]}],Function[Length[#1]<=m]];
indicesO[r_, m_] := Module[{inds, inds2},

inds = Table[i[j], {j, Range[r]}];
inds2 = Prepend[Drop[inds, −1] + 1, 1];
Transpose[{inds, inds2, m + Range[−r + 1, 0]}]];

smnd[hv_] := Module[{inds},
inds = Table[i[j], {j, hv}] − Range[0, Length[hv] − 1];
Apply[Times, inds]];

lambda[nn_, sp_, m_] := Module[{ns, hv,lambda0},
lambda0[hv_, r_, m0_] := lambda0[hv,r,m0] = Module[{si, sind},

si = smnd[hv];
sind = indicesO[r, m0];
Sum[si^2, Evaluate[Sequence @@ sind]]];

ns = Flatten[Table[ConstantArray[i, nn[[i]]], {i, 1, Length[nn]}]];
hv = ns[[Apply[Min, sp, {1}]]];
lambda0[hv, Length[nn], m]];

denom[l_, m_] := Pochhammer[m − l + 1, l];
footruleSRawMomentS[n_,m_] :=

Factor[Sum[Apply[Multinomial, nn]∗lambda[nn, sp, m]/denom[Length[sp], m],
{nn, integerCompositions[n]}, {sp, Combinatorica‘SetPartitions[n]}]]

footruleSRawMomentN[n_, m_] := Sum[Apply[Multinomial, nn]∗lambda[nn, sp, m]/denom[Length[sp], m],
{nn, integerCompositions[n,m]}, {sp, setPartitions[n,m]}];

footruleSRawMoment[0, m_] := 1;
footruleSRawMoment[n_, m_] := (

If[!IntegerQ[n],return[(Print["n must be a nonnegative integer"];Abort[])]];
If[IntegerQ[m] && m<=n,footruleSRawMomentN[n,m],footruleSRawMomentS[n,m]]);

footruleRawMoment[n_,m_] := Module[{mmp1},
mmp1 = m∗(m+1);
Factor[Sum[Binomial[n, k]∗mmp1^k∗(−2)^(n−k)∗footruleSRawMoment[n−k,m], {k, 0, n}]]];

footruleCentralMoment[n_, m_] := Module[{mu},
mu = footruleSRawMoment[1, m];
(−2)^n∗Factor[Sum[Binomial[n, k]∗footruleSRawMoment[k, m]∗(−mu)^(n − k), {k, 0, n}]]];

footruleCumulant[n_, m_] := cumulant[n, footruleRawMoment, m];
footruleNormalizedCumulant[n_,m_] :=

If[n==1,0,footruleCumulant[n,m]/footruleCentralMoment[2,m]^(n/2)];
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5.6 Normal and Edgeworth approximations
For the asymptotic normality of the footrule, we use Theorem 3.3, Hoeffding’s theorem with
our note that we can use δ in place of δ∗ in the numerator (3.22). Here

max{δ2(i, j) | 1 6 i, j 6 m} = max{|i− j|2 | 1 6 i, j 6 m} = (m− 1)2. (5.77)

From (5.19), the variance is of order 2m3/45 as m→∞. Thus the ratio (m− 1)2/Var[dFootrule]
approaches zero, proving that

DFoot − E[DFoot]√
Var[DFoot]

−→ N(0, 1). (5.78)

We next tried the Edgeworth expansion approximations for L = 1, . . . , 6. Generally, those
based on the density expansion and distribution function expansion were similar in accuracy,
except for L = 5 and 6, where the density-based approximations were better. From here on,
we will restrict to those estimates. Figures 5.1, 5.2, and 5.3 compare the approximations using
criteria in (4.54) and (4.55), i.e., the maximum error in estimating the density, in estimating the
distribution function, and the maximum relative error in estimating the p-value for p-values
over 0.00001, respectively.

Overall, the approximations are very good. Even for m = 50 and L = 2, the errors for the
three criteria are, respectively, 3.3×10−7, 4.5×10−6, and 0.04. Table 5.79 shows the values for
L = 6 and select values of m from 10 to 350. Except for the relative error in the p-value for
m < 50, all the errors are quite small.

10 25 50 100

Density 0.00145 1.44×10−6 2.71×10−8 7.28×10−10

Distribution function 0.000803 5.07×10−6 3.44×10−7 2.64×10−8

Relative, p-value 0.482 0.156 0.00354 0.000481

150 200 275 350

Density 9×10−11 2.06×10−11 4.06×10−12 1.19×10−12

Distribution function 6.02×10−9 2.12×10−9 6.74×10−10 2.84×10−10

Relative, p-value 0.000124 4.47×10−5 1.43×10−5 6.05×10−6

(5.79)

5.7 R code
Here we present R functions to calculate the first eight moments and cumulants of the dis-
tribution of the footrule, and the functions for the Edgeworth approximations up to L = 6.
See the parallel section for Spearman’s distance, Section 4.5, for more explanation of these
routines.
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Figure 5.1: The maximum error in estimating the density for the footrule, as a function of
m. The values are log10 of the MEdens; the lines depend on L, the number of terms in the
Edgeworth expansion.

0 50 100 150 200 250 300 350

−
8

−
6

−
4

−
2

L = 0
L = 1
L = 2
L = 3
L = 4
L = 5
L = 6

lo
g 1

0(
M

E
D

F
)

m

Figure 5.2: The maximum error in estimating the distribution function for the footrule, as a
function of m. The values are log10 of the MEDF; the lines depend on L, the number of terms
in the Edgeworth expansion.
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Figure 5.3: The maximum relative error in estimating the p-value (for p-values > 0.00001) for
the footrule, as a function of m. The values are log10 of the MREpv; the lines depend on L, the
number of terms in the Edgeworth expansion.

footrule_moments <− function(m) {
if(m==1) return(rep(0,8))
if(m==2) return(c(1,1,0,1,0,1,0,1))
mu <− (m^2−1)/3
s2 <− (m+1)∗(2∗m^2+7)/45
m3 <− −2∗(m+1)∗(m+2)∗(2∗m^2+31)/945
if(m==3) return(c(mu, s2, m3, 272/27, −(4960/243), 45760/729,−(113792/729), 2829056/6561))
m4 <− (m+1)∗(28∗m^5+180∗m^3+160∗m^2+887∗m+1265)/4725
if(m==4) return(c(mu,s2, m3, m4, −120, 2593/3,−3164, 54571/3))
m5 <− −((4∗(1 + m)∗(2 + m)∗(8555 + m∗(3587 + 2∗m∗(43 + m∗(394 + m∗(−5 + 22∗m))))))/93555)
if(m==5) return(c(mu,s2, m3, m4, m5, 24288/5,−(128576/5), 213376))
m6 <− (1 + m)∗(368963105 + m∗(385870348 + m∗(112117257 + 2∗m∗(16273614 +

m∗(9254091 + 2∗m∗(545223 + m∗(450037 + 286∗m∗(−127 + 147∗m))))))))/127702575
if(m==6) return(c(mu,s2, m3, m4, m5, m6,−(449092336/3645), 49981557493/32805))
m7 <− −2∗(1 + m)∗(2 + m)∗(73541545 + m∗(46078520 + m∗(4890161 + 2∗m∗(1494444 +

m∗(822501 + 2∗m∗(−22140 + 7∗m∗(6113 + 26∗m∗(−16 + 11∗m))))))))/18243225
if(m==7) return(c(mu,s2, m3, m4, m5, m6,m7, 23910656/3))
m8 <− (1 + m)∗(1690532291725 + m∗(2016696623115 + m∗(758605059019 + m∗(125630091477 +

8∗m∗(6671943200 + m∗(2137251630 + m∗(249602164 + m∗(168465567 +
2∗m∗(3955550 + 17∗m∗(408960 + 143∗m∗(−361 + 147∗m)))))))))))/13956067125

c(mu,s2,m3,m4,m5,m6,m7,m8)
}

footrule_cumulants <− function(m) {
if(m==1) return(rep(0,8))
if(m==2) return(c(1, 1, 0, −2, 0, 16, 0, −272))
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k1 <− (m^2−1)/3
k2 <− (1 + m)∗(7 + 2∗m^2)/45
k3 <− −2∗(1 + m)∗(2 + m)∗(31 + 2∗m^2)/945
if(m==3) return(c(k1,k2,k3, −(128/27), 2080/81, 3200/243, −(151424/243), 1083904/729))
k4 <− −2∗(1 + m)∗(−461 + 2∗m∗(−136 + m∗(9 + m∗(4 + 7∗m))))/4725
if(m==4) return(c(k1,k2,k3, k4, 160/3, −(1136/9), −(2912/3), 102736/9))
k5 <− 8∗(1 + m)∗(2 + m)∗(−1028 + m∗(−200 + m∗(125 + m∗(8 + 9∗m))))/31185
if(m==5) return(c(k1,k2,k3, k4,k5, 4512/25, −17248/25, −1229216/125))
k6 <− 16∗(1 + m)∗(5867107 + m∗(4896338 + m∗(411595 + 2∗m∗(−147077 + m∗(5687 +

m∗(4789 + 5673∗m))))))/42567525
if(m==6) return(c(k1,k2,k3,k4,k5,k6, −67053056/6075,−13725231184/91125))
k7 <− −((1/6081075)∗(16∗(1 + m)∗(2 + m)∗(2503157 + m∗(1131328 + m∗(−122143 +

m∗(−33296 + m∗(21407 + 2∗m∗(1028 + 681∗m))))))))
if(m==7) return(c(k1,k2,k3,k4,k5,k6,k7,−8488960/21))
k8 <− −(1/1550674125)∗(16∗(1 + m)∗(−10129376957 + 2∗m∗(−5353166424 + m∗(−1413344332 +

m∗(109175700 + m∗(25532019 + m∗(−15456588 + m∗(−312530 + m∗(281688 + 350635∗m)))))))))
c(k1,k2,k3,k4,k5,k6,k7,k8)

}

footrule_normalized_cumulants <− function(m) {
if(m<2) return(rep(0,8))
fc <− footrule_cumulants(m)
sigma <− sqrt(fc[2])
c(0,1,fc[3:8]/sigma^(3:8))

}

footrule_edgeworthf <− function(x,m,L,n=1) {
mu <− n∗(m^2−1)/3
sigma <− sqrt(n∗(1 + m)∗(7 + 2∗m^2)/45)
kum <− footrule_normalized_cumulants(m)
z <− (x−mu)/sigma
dnorm(z)∗edgef(z,L,kum,n)∗2/sigma

}

footrule_edgeworthF <− function(x,m,L,n=1) {
mu <− n∗(m^2−1)/3
sigma <− sqrt(n∗(1 + m)∗(7 + 2∗m^2)/45)
kum <− footrule_normalized_cumulants(m)
z <− (x−mu+1)/sigma
pnorm(z) − dnorm(z)∗edgeF(z,L,kum,n)

}
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Kendall’s distance

A popular distance is Kendall’s distance, which is the distance upon which Kendall’s τ mea-
sure of correlation is based. See M. G. Kendall & Gibbons (1990). For x,y ∈ Pm, Kendall’s
distance counts the number of discordant pairs in the two vectors, a discordant pair being an
(xi,yi) and (xj,yj) for which xi < xj but yi > yj, or vice versa. The distance is then given by

dKen(y,x) =
∑∑
16j<i6m

I[(xi − xj)(yi − yj) < 0]. (6.1)

This distance is label-invariant, hence for the null distribution it is enough to take x = ω =
(1, . . . ,m) and consider the distribution of

DKen = dKen(Y ,ω), Y ∼ Uniform(Pm). (6.2)

The dKen(y,ω) can also be given as the number of adjacent interchanges in the y needed
to bring y to ω. E.g., if m = 4 and y = (3, 1, 4, 2), we can proceed as

(3, 1, 4, 2)→ (1, 3, 4, 2)→ (1, 3, 2, 4)→ (1, 2, 3, 4). (6.3)

There are three interchanges, so dKen((3, 1, 4, 2), (1, 2, 3, 4)) = 3.
To find the exact and asymptotic distribution of DKen, we present a convenient decompo-

sition into independent random variables in the next section, which we then apply in later
sections.

6.1 Decomposition
First, we organize the sum according to the yi’s. With x = ω = (1, 2, . . . ,m), the xi − xj > 0 in
the summation (6.1). Then we can write

dKen(Y ,ω) =
∑∑
16j<i6m

I[Yi < Yj]

=

m∑
i=2

Vi, where Vi =

i−1∑
j=1

I[Yi < Yj]. (6.4)

65
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So, for example, V4 is the number of {Y1, Y2, Y3} that exceed Y4. Note that Vi has space
{0, . . . , i−1}, for i = 2, . . . ,m. Feller (1968, page 256-257) argues that the Vi are independent
and uniformly distributed over their spaces. Let

Vm = {0, 1}× {0, 1, 2}× · · · × {0, . . . ,m− 1} (6.5)

be the Cartesian product of these spaces. Then the map y → u = (v1, . . . , vm−1) is clearly from
Pm into Vm. Also, if y(1) 6= y(2), then the corresponding v(i)’s are not equal. (Find the largest
index i for which y(1)i 6= y

(2)
i . Then since the set of values {y

(k)
1 , . . . ,y(k)i } is the same for both

vectors k = 1 and 2, but in different orders, the fact that they differ y(k)i means they differ in
v
(k)
i .) Since #Pm = #Vm = m!, the map must be onto. Since the distribution of Y is uniform,

so must be the induced distribution on V . From that fact, and the Cartesian nature of Vm, we
have

V2, . . . ,Vm are independent, Vi ∼ Discrete Uniform({0, . . . , i− 1}). (6.6)

6.2 Moments
The moments of Kendall’s distance can be found from the moments of the discrete uniforms.
The mean and variance of a discrete uniform on {0, . . . ,k} are k/2 and k(k+ 2)/12, respectively.
We present again for reference the sums of the first four powers of 1, . . . ,k, as in (5.7):

n σ
(n)
k ≡

∑k
i=1 i

n

1 k(k+ 1)/2
2 k(k+ 1)(2k+ 1)/6
3 k2(k+ 1)2/4
4 k(k+ 1)(2k+ 1)(3k2 + 3k− 1)/30

(6.7)

Then, with i ′ = i− 1,

E[DKen] =

m∑
i=2

E[Vi] =

m−1∑
i=1

i

2

=
σ
(1)
m−1
2

=
m(m− 1)

4
, (6.8)

and

Var[DKen] =

m∑
i=2

Var[Vi] =

m−1∑
i=1

i(i+ 2)
12

=
σ
(2)
m−1 + 2σ(1)m−1

12
=
m(m− 1)(2m+ 5)

72
. (6.9)

Higher moments can be found similarly, from which we can find cumulants, but Moran
(1950) and Silverstone (1950) find the cumulants directly. We will show that the nth cumulant
of Vi is

κ
(i)
n = κUn (i

n − 1), (6.10)



DRAFT

6.2. MOMENTS 67

where κUn is the nth cumulant of U ∼ Uniform(0, 1). See (2.49) and (2.50). To verify (6.10), note
that the cumulant generating function of the Uniform(0,a) is

cU(t ; a) = log
(
eat − 1
at

)
, (6.11)

while that of Vi is

cV(t) = log
(

1
k+ 1

1 − eit

1 − et

)
= log

(
eit − 1
it

)
− log

(
et − 1
t

)
= cU(t ; i) − cU(t ; 1). (6.12)

Thus the nth cumulant of Vi is the nth cumulant of the Uniform(0, i) minus that of the
Uniform(0, 1). Since the Uniform(0, i) = i·Uniform(0, 1), its nth cumulant is inκUn , hence
(6.10) follows from (6.12).

Let κn be the nth cumulant of Kendall’s distance DKen. Since DKen is a sum of the inde-
pendent Vi’s as in (6.4), and the cumulants of Vi are given by (6.10), we have

κn =

m∑
i=2

κ
(i)
n = κUn

m∑
i=2

(in − 1)

= κUn

m∑
i=1

(in − 1)

= κUn (σ
(n)
m −m). (6.13)

The odd cumulants of the uniform are zero except for the first, so the same is true for
Kendall’s distance. Using (6.7) and (2.50) in (6.13), we have that the fourth cumulant of DK is

κ4 = −
1

120

(
1
30
m(m+ 1)(2m+ 1)(3m2 + 3m− 1) −m

)
= −

m(m− 1)
(
6m3 + 21m2 + 31m+ 31

)
3600

. (6.14)

Similarly, using Mathematica, we can find that

κ6 =
(m− 1)m

(
6m5 + 27m4 + 48m3 + 48m2 + 41m+ 41

)
10584

, and

κ8 = −
(m− 1)m

(
10m7 + 55m6 + 115m5 + 115m4 + 73m3 + 73m2 + 93m+ 93

)
21600

.

(6.15)

The conversion formulas in Section 2.2 can be used to find various types of moments from the
cumulants.
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6.2.1 Mathematica code

Equation (6.13) is used in kendallCumulant[n,m] to find the nth cumulant of Kendall’s distance.
We use the Mathematica function Cumulant to find the Uniform(0,1) cumulants. The regular
moments are found using kendallMoment[n,m], which call the function cumulant2moment from
Section 2.4.1.
kendallCumulant[n_,m_] := Factor[(Sum[k^n,{k,1,m}]−m)∗Cumulant[UniformDistribution[{0,1}],n]];
kendallMoment[n_,m_] := cumulant2moment[n,kendallCumulant,m];

6.3 Exact distribution
The exact distribution of Kendall’s distance can be found using convolutions of the Vi’s. The
basic algorithm is to let Wk = V2 + · · ·+ Vk, k = 2, . . . ,m, so that Wk+1 is the convolution of
Wk and Vk+1. Note that Wk has the distribution of Kendall’s distance with k objects ranked.
Thus the range of Wk is {0, . . . ,k(k− 1)/2}. Let fk(w) be the density of Wk, and gi be that of
Vi, so that gi(u) = 1/i for u = 0, . . . , i− 1. We start with

f2(w) = g2(w) =
1
2

, w = 0, 1, (6.16)

then for k = 2, . . . ,m− 1, we have

fk+1(w) =

min{w,k(k−1)/2}∑
u=max{0,w−k}

fk(u)gk+1(w− u) =
1

k+ 1

min{w,k(k−1)/2}∑
u=max{0,w−k}

fk(u). (6.17)

The distribution ofWk is symmetric, fk(w) = fk(k(k−1)/2−w), hence we need to calculate
(6.17) for only w = 0, . . . ,k∗ ≡ floor(k(k+ 1)/4), then fill in the rest. The upper limit in the
sum will then be just w, so that this step is

fk+1(w) =
1

k+ 1

w∑
u=max{0,w−k}

fk(u), w = 0, . . . ,k∗,

fk+1(w) = fk+1

(
k(k+ 1)

2
−w

)
, w = k∗ + 1, . . . ,

k(k+ 1)
2

. (6.18)

6.4 Normal and Edgeworth approximations
To prove the asymptotic normality of Kendall’s distance, we use the following corollary of the
Lindeberg–Feller theorem. See, e.g., Serfling (1980, page 30).

Theorem 6.1. Suppose Vi, i = 1, 2, . . . are independent, and let Dm =
∑m
i=1 Vi. If for some ν > 2,∑m

i=1 E|Vi − E[Vi]|
ν

Var[Dm]ν/2 → 0 as m→∞, (6.19)

then (Dm − E[Dm])/
√
Var[Dm]→ N(0, 1).
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For Vi as in (6.6) (where V1≡0), |Vi − E[Vi]| < i− 1, hence

m∑
i=1

E|Vi − E[Vi]|
ν = O(mν+1). (6.20)

Now Dm = DKen, and by (6.9) has variance of order m3/36. Thus the ratio in (6.19) is
O(m1−ν/2), which goes to zero for any ν > 2, proving by Theorem 6.1 that

DKen − E[DKen]√
Var[DKen]

−→ N(0, 1) as m→∞. (6.21)

Figures 6.1 (density), 6.2 (distribution function), and 6.3 (p-values, relative) illustrate the
maximum errors of the normal approximation and Edgeworth approximations (up to L = 10
terms) for m from 10 to 500. See (4.54) and (4.55) for definitions of these errors. These graphs
are based on the Edgeworth expansion of the density, which overall, but especially for larger
m, showed smaller errors than those based on the distribution function’s expansion.

For m = 500, which can be found quickly using the exact algorithm of Section 6.3, the
simple normal approximation is very good for the density and distribution function, with
maximum errors of about 1×10−7 and 1×10−4, respectively. The relative error for the p–values
has maximum error about 0.05, which may be a little high. With L = 2 terms in the Edgeworth
expansion, these three maximum errors are about 1.4×10−10, 1.4×10−7 and 7.5×10−4, which
are probably sufficient for the usual situations.

A moderate m = 100 may need the L = 4 term expansion, with maximum errors around
6.5×10−10, 1×10−8 and 2×10−4. For small m = 10, we need to go to the L = 10 term expansion
for the relative error of the p-value to achieve a maximum under 0.1, in which case the density
and distribution function errors are about 1×10−6 and 3×10−6, respectively.

The bottom line is that for moderate to large m, L = 4 is fine. For small m the exact
algorithm is easy, anyway, so might as well use that.

6.5 R code
Below are the R functions for the moments (up to order 12), cumulants, and normalized cumu-
lants, as well as the Edgeworth expansions of the density and distribution. These expansions
take up to L = 10 terms. Note that the formulas for the cumulants are much nicer than those
for the moments.
kendall_moments <− function(m) {

if(m<2) return(rep(0,12))
(1/4)∗(−1 + m)∗m ∗ c(1,
(2∗m+5)/18,
0,
(−372 + m∗(−997 + m∗(−127 + 4∗m∗(82 + 25∗m))))/10800,
0,
(118080 + m∗(391500 + m∗(400733 + m∗(−72460 + m∗(−230695 +

2∗m∗(−21005 + 98∗m∗(167 + 50∗m)))))))/7620480,
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Figure 6.1: The maximum error in estimating the density for Kendall’s distance, as a function
of m. The values are log10 of the MEdens; the lines depend on L, the number of terms in the
Edgeworth expansion.
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Figure 6.2: The maximum error in estimating the distribution function for Kendall’s distance,
as a function of m. The values are log10 of the MEDF; the lines depend on L, the number of
terms in the Edgeworth expansion.
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0,
−31/1800 + (m∗(−113130288 + m∗(−138803688 + m∗(−49258153 + m∗(59298827 +

m∗(62414373 + m∗(4246473 + 8∗m∗(−1994064 + m∗(−549519 +
2450∗m∗(67 + 25∗m))))))))))/1959552000,

0,
61/2178 + (m∗(41672603520 + m∗(65336937840 + m∗(36134049576 + m∗(−18039907415 +

m∗(−30431836250 + m∗(−9671655490 + m∗(3953929208 + m∗(4562897865 + 2∗m∗(553095465 +
484∗m∗(−664175 + 2∗m∗(−167719 + 1225∗m∗(13 + 10∗m)))))))))))))/379369267200,

0,
−2363911/22358700 + (m∗(−172335083530314240 + m∗(−197459676044536896 +

m∗(−150837210953698896 + m∗(−77972420124688716 + m∗(88247642830732759 +
m∗(135417602903986777 + m∗(11392020884057902 + m∗(−42894902437432958 +
m∗(−11183279701895213 + m∗(3773773972549669 + 4∗m∗(418337303120486 +

169∗m∗(849771419099 + 23716∗m∗(−1327741 +
25∗m∗(−373789 + 4900∗m∗(−4 + 5∗m))))))))))))))))/514072947548160000)}

kendall_cumulants <− function(m) {
if(m<2) return(rep(0,12))
(1/4)∗(−1 + m)∗m ∗ c(1,
(2∗m+5)/18,
0,
(1/900)∗(−31 − m∗(31 + 3∗m∗(7 + 2∗m))),
0,
(41 + m∗(41 + 3∗m∗(16 + m∗(16 + m∗(9 + 2∗m)))))/2646,
0,
(−93 − m∗(93 + m∗(73 + m∗(73 + 5∗m∗(23 + m∗(23 + m∗(11 + 2∗m)))))))/5400,
0,
(61 + m∗(61 + m∗(94 + m∗(94 + m∗(28 + m∗(2 + m)∗(1 + 2∗m)∗(14 + 3∗m∗(4 + m)))))))/2178,
0,
−((1/22358700)∗(691∗(3421 + m∗(3421 + m∗(−1129 + m∗(−1129 + 5∗m∗(1576 + m∗(1576 + 7∗m∗(−20 +

m∗(−20 + 3∗m∗(41 + m∗(41 + m∗(15 + 2∗m))))))))))))))}

kendall_normalized_cumulants <− function(m) {
kc <− kendall_cumulants(m)
c(0,1,kc[−(1:2)]/kc[2]^((1:length(kc))[−(1:2)]/2))}

kendall_edgeworthf <− function(x,m,L,n=1) {
mu <− n∗(m−1)∗m/4
sigma <− sqrt(n∗m∗(m−1)∗(2∗m+5)/72)
kum <− kendall_normalized_cumulants(m)
z <− (x−mu)/sigma
dnorm(z)∗edgef(z,L,kum,n)/sigma}

kendall_edgeworthF <− function(x,m,L,n=1) {
mu <− n∗(m−1)∗m/4
sigma <− sqrt(n∗m∗(m−1)∗(2∗m+5)/72)
kum <− kendall_normalized_cumulants(m)
z <− (x−mu+.5)/sigma
pnorm(z)−dnorm(z)∗edgeF(z,L,kum,n)}
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Figure 6.3: The maximum relative error in estimating the p-value (for p-values > 0.00001) for
Kendall’s distance, as a function of m. The values are log10 of the MREpv; the lines depend
on L, the number of terms in the Edgeworth expansion.
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Hamming distance

7.1 Exact distribution
It is not too hard to find the exact distribution of the Hamming distance, and from that
to derive the moments. As a Hoeffding distance, one can also use (3.17) for the first two
moments, which is also computationally easy. See Section 7.2. Here we sketch the argument
given by Feller (1968), pages 100–106.

For given y ∈ Pm and each i = 1, . . . ,m, let Ai be the event that yi = i, and Bi be its
complement, yi 6= i. Then for k = 0, . . . ,m,

P[dHam(Y ,ω) = k] = P[#{i |Yi = i} = m− k]. (7.1)

There are
(
m
k

)
ways to choose which of the yi = i, and each of those has the same probability.

E.g., P[Y1 = 1, Y2 = 2, Yi 6= i, i = 3, . . . ,m] = P[Ym−1 = m− 1, Ym = m, Yi 6= i, i = 1, . . . ,m− 2].
Letting the last m− k be the ones that match, we then have

P[dHam(Y ,ω) = k] =
(
m

k

)
P[Y1 6= 1, . . . ,Yk 6= k, Yk+1 = k+ 1, . . . ,Ym = m]

=

(
m

k

)
P[Y1 6= 1, . . . ,Yk 6= k |Yk+1 = k+ 1, . . . ,Ym = m]

× P[Yk+1 = k+ 1, . . . ,Ym = m]

=
1

(m− k)!
P[Y1 6= 1, . . . ,Yk 6= k |Yk+1 = k+ 1, . . . ,Ym = m], (7.2)

the last equation following from

P[Yk+1 = k+ 1, . . . ,Ym = m] =
1
m

1
m− 1

· · · 1
k+ 1

=
1

(m)k
=
k!
m!

. (7.3)

Consider the conditional probability given in (7.2). Conditionally, the Y1, . . . ,Yk all must
take values in the range 1, . . . , k, and any arrangement is equally likely. Thus (Y1, . . . ,Yk) is
conditionally Uniform(Pk), so that is sufficient to find

P[Y∗1 6= 1, . . . ,Y∗k 6= k] where Y ∗ ∼ Uniform(Pk). (7.4)

73
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We take the complement of the intersection in the probability:

P[Y∗1 6= 1, . . . ,Y∗k 6= k] = 1 − P[Y∗1 = 1 or Y∗2 = 2 or . . . or Y∗k = k]. (7.5)

Now we use the union-intersection principle on the probability of the union (Feller, 1968,
theorem on page 99):

P[Y∗1 = 1 or Y∗2 = 2 or . . . or Y∗k = k] =
k∑
i=1

P[Y∗i = i] −
∑

16i<j6k

P[Y∗i = i, Y
∗
j = j]

+
∑

16i<j<l6k

P[Y∗i = i, Y
∗
j = j, Y

∗
l = l]

± · · ·+ (−1)k+1P[Y∗1 = 1, Y∗2 = 2, . . . ,Y∗k = k]. (7.6)

As above, each of the summations on the right-hand side is a sum of equal summands, on
which can use the formula (7.3), to obtain∑

16i1<i2<···<ir6k
P[Y∗i1 = i1, . . . ,Y∗ir = ir] =

(
k

r

)
1

(k)r
=

1
r!

. (7.7)

Then inserting these values into (7.6) and subtracting from 1 we have from (7.5) that

P[Y∗1 6= 1, . . . ,Y∗k 6= k] = 1 −

k∑
r=1

(−1)r+1

r!
=

k∑
r=0

(−1)r

r!
≡ Ek. (7.8)

We take E0 = 1. Note that Ek is the sum of the first k+ 1 terms of the expansion of e−1. Also,
E1 = 0, which makes sense since it is impossible to have exactly one Y∗i 6= i. Thus from (7.3),

P[dHam(Y ,ω) = k] =
1

(m− k)!
Ek, k = 0, . . . ,m. (7.9)

7.2 Moments
If interest is mainly in the first two moments, the Hoeffding approach is quite simple. The
Hamming distance has δ(i, j) = I[i 6= j], so that we can write,

∆Ham = 1 ′1− I , (7.10)

and find from (3.9) that
H∆HamH = −H . (7.11)

Then by (3.17),

E[dHam(Y ,ω)] = trace(H) = m− 1 and

Var[dHam(Y ,ω)] =
1

m− 1
trace(H) = 1. (7.12)
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For higher moments, it is easiest to consider factorial moments of the number of matches.
That is, let C be the random variable

C = m− dHam(Y ,ω). (7.13)

The density of C is found from (7.9) by switching k and m− k:

P[C = k] =
1
k!
Em−k, k = 0, . . . ,m. (7.14)

The sth factorial moment (see (2.1)) of C for positive integer s is

γs = E[(C)s] = E[C(C− 1) · · · (C− s+ 1)]. (7.15)

Note that (c)s = 0 if c < s, hence (c)s = 0 if m < s and c is in the range of C. Thus γs = 0 for
s > m. For 0 6 s 6 m, we have

E[(C)s] =

m∑
c=0

(c)s
1
c!
Em−c =

m∑
c=s

(c)r
1
c!
Em−c =

m∑
c=s

1
(c− s)!

Em−c (set k = c− s)

=

m−s∑
k=0

1
k!
E(m−s)−k = 1, (7.16)

the final equation following from the fact that the summation is over the density of C form− s
objects. Thus

γs = I[0 6 s 6 m]. (7.17)

We can use (2.20) to find the raw moments from the factorial moments:

µ ′s ≡ E[Cs] = s!
∑
k∈As

I[k∗ 6 m]

s∏
l=1

1
kl!

(
1
l!

)kl
. (7.18)

See Lemma 2.1 for the definitions of As and k∗. Then use (2.10) (where E[C] = 1) to obtain the
central moments from the raw moments:

µ ′n = E[(C− 1)n] =
n∑
s=0

(
n

s

)
(−1)n−sµ ′s. (7.19)

The central moments for the Hamming distance can then be easily obtained from those of C
via

µn = (−1)nµ ′n. (7.20)

We note that the Poisson(1) random variable has all factorial moments as well as cumulants
equal to 1. (For the Poisson(λ), the factorial moments are γn = λn and the cumulants are all
λ.) Thus the nth moment (cumulant) of C is the same as the nth moment (cumulant) of the
Poisson(1) as long as n 6 m. The central moments for n = 2, . . . , 8 for the Hamming distance
are given next, each assuming m > n:

n 2 3 4 5 6 7 8

µn 1 −1 4 −11 41 −162 715
(7.21)
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7.3 Asymptotics

The fact that the kth factorial moments of C are the same as those for the Poisson(1) for k 6 m
suggests that as m → ∞, the C approaches that Poisson. Indeed, it does. From (7.8) we have
that Ek is the sum of the first k terms in the expansion of e−1, hence for the density of C in
(7.14), for any fixed k, Em−k → e−1 as m→∞. That is,

P[C = k] −→ e−1 1
k!

, (7.22)

the Poisson(1) density. Thus for the footrule,

DHam −→D m− Poisson(1). (7.23)

Diaconis (1988, page 117) states that the total variation distance (the maximum absolute
difference between the two distributions of the probability of any set) between C and the
Poisson(1) is less than 2m/m!. For m = 10 the value is 0.00028, and for m = 25 it is 2.1×10−18.
Thus even though the exact distribution is fairly easy to compute for moderate m, the Poisson
approximation is essentially exact for m > 25.
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Ulam’s distance

8.1 Definition
For a rank vector y ∈ Pm, an increasing subsequence is a subsequence (yi1 , . . . ,yik) where

1 < i1 < · · · < ik 6 m and yi1 < yi2 < · · · < yik . (8.1)

Then a longest increasing subsequence is a subsequence with the largest k. There may be
more than one subsequence with the largest k. Ulam suggested a distance between ω =
(1, 2, . . . ,m) and y be m− k:

dUlam(y,ω) = m− Length of longest increasing subsequence of y. (8.2)

Then if y = ω, the distance is zero. The worst is if y = (m,m− 1, . . . , 1) where there are only
increasing subsequences of length 1, i.e., the distance is m− 1. Some examples for m = 6:

y Longest increasing subsequence(s) Length dUlam(y,ω)
123456 123456 6 0
512463 1246 4 2
241635 246, 245, 135 3 3
654321 1, 2, 3, 4, 5, 6 1 5

(8.3)

The distance between y and an arbitrary x ∈ Pm is defined as m minus the length of the
longest increasing subsequence on which x and y are increasingly related, i.e., m− L for the
largest L for which there are indices i1, . . . , iL such that

xi1 < xi2 < · · · < xiL and yi1 < yi2 < · · · < yiL . (8.4)

Equivalently, reorder the objects such that x = ω, then use (8.2) on the reordered y.
The analysis of this distance involves some deep and interesting mathematics, which we

review in this chapter. Section 8.2 we present an efficient way to find the longest increasing
subsequence. Section 8.3 uses fairly advanced combinatorics to find a way to calculate the
null distribution that is much faster than basic enumeration. The asymptotic distribution was
only recently discovered, being the Tracy-Widom distribution (Section 8.4), which arises in the
asymptotic distribution of eigenvalues in random matrices. The approximation based on this
distribution needs very large m to kick in, so in Section 8.4 uses beta approximations based
on simulations preformed by Wellner (2002).

77
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8.2 Calculating the distance
Schensted (1961) presents an algorithm that calculates the length of the longest increasing
subsequence in one pass through the elements of y. Aldous & Diaconis (1999) relate the
algorithm to card game they term patience sorting, where there arem cards with the numbers
1 to m in the order given by the y. (“Patience” is British for games called “solitaire” in the
U.S.)

The algorithm sequentially places each yi into one of a row of m potential cells. We start
by placing y1 in the left-most cell. Suppose after placing yi, we have the left-most li of the
cells occupied. Let s(i)j be the y-value in cell j, j = 1, . . . , li. If yi+1 > s

(i)
li

(the right-most cell),
then we place yi+1 in the next empty cell, so that we have one more occupied cell, li+1 = li+ 1
and s(i+1)

li+1
= yi+1. The other cells remain the same, s(i+1)

j = s
(i)
j , j = 1, . . . , li. If yi+1 < s

(i)
li

, then
we find the smallest value among the cells that exceeds yi+1, say the value in cell h. Then we
place yi+1 in cell h, and “bump” the previous value from the cell. The rest of the cells remain
the same, i.e., s(i+1)

h = yi+1, and s(i+1)
j = s

(i)
j , j 6= h.

When we finish, we have lm cells filled. The claim is that the length of the longest increas-
ing subsequence is lm. It is easier to see an illustration, after which we justify the claim. Let
y = (4, 1, 3, 6, 5, 7, 2). We proceed through the vector.

y1 = 4, which we place in the first cell. ⇒ 4 (l1 = 1)

y2 = 1 is less than s(1)1 = 4, hence we replace the
4 with the 1.

⇒ 1 (l2 = 1)

y3 = 3
is larger than what is there, hence we
place it in the next-right cell. ⇒ 1 3 (l3 = 2)

y4 = 6
is again larger than what is in the cells,
hence we place it in the third cell. ⇒ 1 3 6 (l4 = 3)

y5 = 5 is smaller than just the s(4)3 = 6, hence we
bump the 6 and replace it with the 5

⇒ 1 3 5 (l5 = 3)

y6 = 7 is larger than anything, hence we place it
is a new cell.

⇒ 1 3 5 7 (l6 = 4)

y7 = 2
is smaller than 3, 5, and 7, so the 2
bumps the smallest of those. ⇒ 1 2 5 7 (l7 = 4)

(8.5)

There are lm = 4 occupied cells. Inspecting y, we see that the longest increasing subsequences
are 1367 and 1357, which are indeed of length 4. Thus dUlam(y,ω) = m− lm = 2. Note that
the sequence of numbers in the cells at the end of the process in (8.5), 1257, is not the longest
increasing subsequence, being not an increasing subsequence within y.

By construction, the numbers in the cells increase as we go from left to right, and over
time, for each cell, the numbers do not increase, s(i+1)

j 6 s(i)j (if the cells are occupied).
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If we are interested in knowing the best sequence in addition to its length, we add some
notes to our above procedure. For each yi, we note the number directly to its left when first
placed in a cell, unless it is placed in the first cell. For the sequence in (8.5) we would have

4(∅); 1(∅); 3(1); 6(3); 5(3); 7(5); 2(1). (8.6)

Starting with the number in the right-most cell in (8.5), in this case 7, we see that 5 was directly
to its left, then 3 was directly to the left of 5, and 1 was directly to the left of 3. There is nothing
the left of 1, so we have the sequence from right to left, 7531, or from left to right, 1357. This
sequence is one of the longest increasing subsequences.

To show that the above algorithm in general finds the length of the longest increasing
subsequence, we argue the following two facts. Here, L is the number of occupied cells
resulting from the procedure.

1. There exists an increasing subsequence of length L. As above, for each yi, let yj(i) be the value
in the cell just to the left of that into which yi is placed (at the time yi is placed). Then
j(i) < i because the values are placed sequentially by index, and yj(i) < yi, since yj(i) is
to the left of yi among the cells. Let aL be the index of the value in the Lth (right-most)
pile, so that s(m)

L = yaL . For l = L− 1, . . . , 1, set al = j(al+1) as in (8.6). Note that yaL is
in cell L, hence yL−1 was initially placed in cell L− 1, and yal was initially placed in cell
l, l = L− 2, . . . , 1. That is, this sequence is of length L. Then we have that

a1 < a2 < · · · < aL and ya1 < ya2 < · · · < yaL , (8.7)

which is an increasing subsequence of length L.

2. If an increasing subsequence has length K, then K 6 L. Suppose yi1 , . . . ,yiK is an increasing
subsequence as in (8.1). During the procedure, yi1 will be placed in a cell, say cell k,
s
(i1)
k = yi1 . At yi2’s turn, the kth cell will be no more than yi1 since s(i2)k 6 s

(i1)
k . Thus

yi1 < yi2 implies that yi2 will be placed in a cell to the right of k. Continuing, each yij
will be placed to the right of the previous. Since there are only L occupied cells in the
entire patience process, the K distinct cells the yij’s are placed in must all be at or to the
left of L, hence K 6 L.

Thus items 1 and 2 show that the maximum length of the set of increasing subsequences is L.

8.3 The exact distribution
Schensted used his algorithm from the previous section to show a correspondence between
permutations (rank vectors for us) and pairs of what are known as Young tableaux. The
numbers of such tableaux are easily counted using a remarkable formula by Frame, Robinson,
and Thrall (1954), which can then be used to efficiently determine the exact distribution of the
length of the longest subsequence, or Ulam’s distance, form up to about 150. Here we present
the basic ideas in Schensted’s development.

Schensted continues his algorithm as in (8.5) by taking the bumped values, and using them
to fill further rows of cells. That is, if a value is bumped from the initial row, it is inserted into
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a second row using the same rules as for the first row. Any value bumped from the second
row is placed in a third row, etc. Consider again the example with y = (4, 1, 3, 6, 5, 7, 2). We
start as before, with y1 = 4 in the first cell. But when y2 = 1 bumps 4, we now place it in the
first cell of the second row, as in table (a) in (8.8). Then y3 = 3 and y4 = 6 go in the first row
as before, with no bumping, yielding table (b).

(a)
1
4 (b)

1 3 6
4 (c)

1 3 5
4 6 (d)

1 3 5 7
4 6 (e)

1 2 5 7
3 6
4

(8.8)

Next, y5 = 5 means the 6 gets bumped to the second row. Since it is larger than the 4, it
is placed in the second cell, as in table (c). The y6 = 7 has no bumping, yielding table (d).
Finally, y7 = 2, which bumps the 3 from the first row. Now the 3 bumps the 4 in the second
row, which then must start a third row, hence we obtain table (e).

Consider the shapes of the tables in (8.8). In each case, the lengths of the rows are non-
increasing as we go down. Such tables, ignoring the numbers in the boxes, are called Young
diagrams. (If the boxes are replaced by dots, they are Ferrers diagrams.) Such diagrams are
graphical representations of partitions of integers. That is, in table (e), the row lengths are
(4, 2, 1), which is a partition of the integer m = 7. By construction, the values in each row
are increasing as we go from left to right. Notice also that in each column, the values are
increasing from top to bottom. We will call such arrangements monotone Young tableaux
(which is not standard terminology). If as for table (e), a monotone tableau with m cells
contains exactly the numbers 1, . . . ,m, then it is a standard Young tableaux. (A plain Young
tableau is a Young diagram with distinct numbers in the boxes, but in no particular order.)
We summarize the first key result due to Schensted. The example in (8.8) may be convincing
enough, but we provide a fairly detailed proof.

Lemma 8.1. For each y ∈ Pm, Schensted’s algorithm yields a standard Young tableau with m cells.

Proof. Let P (i) be the table at stage i (so that, e.g., table (a) in (8.8) is P (2), table (b) is P (4), and
table (e) is P (7) ≡ P ). P (1) is just a single box with y1, hence is a monotone Young tableau.
Suppose P (i) is a monotone Young tableau, and start the process of placing yi+1.

We first verify that the Schensted algorithm guarantees that P (i+1) is a Young diagram,
i.e., the lengths of the rows are nonincreasing as we go down. If two consecutive rows of P (i)

are such that the top one of the two is longer than the other, then any number bumped from
the top will increase the next row by at most one, hence will still satisfy the monotonicity. If
the two have the same length, and a number is bumped from the top one, that number will be
less than the number in the box directly below it by the assumption of increasingness down
the columns. Thus it will be placed in that box, or one to the left, which in either case will
leave the length of that row the same.

Now to make sure the monotonicity is preserved. Going from P (i) to P (i+1) will involve
a series of placings and, possibly, bumpings. Each such placing will preserve the row mono-
tonicity, so for the rest of the proof we will focus on showing the column monotonicity. We
show that after each placing, the monotonicity holds. First, yi+1 is placed in row 1. If yi+1 is
larger than anything in that row, it is added to the end of that row. Since it will be the only
value in its column, the column monotonicity is fine. Everything else stays the same, and we



DRAFT

8.3. THE EXACT DISTRIBUTION 81

are finished. Otherwise yi+1 bumps the lowest value in the first row that is larger than yi+1,
say z ≡ P (i)

1,c . By the monotonicity of the ith table,

P
(i)
1,1 < · · · < P

(i)
r,c−1 < yi+1 < z = P

(i)
1,c < · · · < P

(i)
r+1,c1

(8.9)

and

yi+1 < z = P
(i)
1,c < P

(i)
2,c < · · · < P

(i)
rc,c, (8.10)

where c1 is the number of boxes in the first row, and rc is the number in the cth column. Thus
replacing P (i)

1,c with yi+1 preserves the monotonicity of the table.
Next, z must be placed in the second row. It will go in column c ′ where c ′ 6 c. (Obvious

if box c in row 2 is empty; otherwise, z < P (i)
2,c by (8.10).) Consider the two possibilities:

1. The z is larger than anything in row 2, so that we append it to the end of row. If c ′ = c, z
is in the box directly under yi+1, which is less than z. If c ′ < c, z is directly under P (i)

1,c ′ ,
which is even smaller than yi+1 by (8.9). Since there is nothing below z in either case,
the column monotonicity holds.

2. We have P (i)
2,c ′−1 < z < P

(i)
2,c ′ , so that z replaces w ≡ P (i)

2,c ′ . By (8.9), P (i)
1,c ′ < yi+1 < z, and

by the column monotonicity of P (i), z < P (i)
2,c ′ < P

(i)
3,c ′ . Thus column monotonicity holds.

If possibility 2 occurs, then w has been bumped, and must be place in row 3. By similar
reasoning, it will either be appended to the row (possibly a previously empty row), thus
finishing the process, or will bump another number. We continue until nothing is bumped.
The end result is P (i+1), a monotone tableau. Thus by the induction hypothesis, all the tables
are monotone. The final one, P (m), in addition contains all the values from y, hence is a
standard Young tableau.

To summarize, each y ∈ Pm is associated with a standard Young tableau, and the length
of the first row in the tableau is equal to the length of the longest increasing subsequence
in y. Schensted also shows that the length of the first column is the length of the longest
decreasing subsequence. (In fact, the tableau for the reversed y, (ym, . . . ,y1), is the transpose
of the tableau for y. See his Lemma 7.) However, there may be several y’s with the same
P . To use these tableaux to find the exact distribution of Ulam’s distance, we need to find a
one-to-one representation, which is achieved by noting when each new box is added to the
table during the Schensted algorithm. Specifically, we fill out a matrix Q as we go along,
which is also a standard Young tableau, of the same shape as P .

At each stage in the algorithm, a new box is added to the table. For the Q matrix, we add
a box at the same location, but fill it with the index i of the stage. There is no bumping for
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the Q matrices. We illustrate with y = (4, 1, 3, 6, 5, 7, 2) as in (8.5) and (8.8):

i yi P (i) Q(i)

1 4 4 1

2 1
1
4

1
2

3 3
1 3
4

1 3
2

4 6
1 3 6
4

1 3 4
2

5 5
1 3 5
4 6

1 3 4
2 5

6 7
1 3 5 7
4 6

1 3 4 6
2 5

7 2
1 2 5 7
3 6
4

1 3 4 6
2 5
7

(8.11)

It is not too hard to see that Q is a standard Young tableau, since each new added box
contains a number higher than anything else so far in the table. The interesting fact is that the
pair (P ,Q) uniquely determines y, which follows from the next lemma.

Lemma 8.2. Suppose P and Q are standard Young tableaux of the same shape with m cells. Then
there exists y ∈ Pm such that the Schensted algorithm applied to y yields (P ,Q).

Proof. We reverse the steps in the Schensted algorithm, the bumpers and bumpees trading
places. Start with the cell in Q that contains m, say Qr,c. Since m is the largest entry, it must
be at the end of one of the rows and the end of its column. If it is in the first row, set ym to
be the value at the end of the first row in P , Pr,c. If it is in row r > 1, then we know that
the number right above it is smaller, Pr−1,c < Pr,c. Find the largest value in row r− 1 that is
smaller than Pr,c, say Pr−1,c ′ , where c ′ > c. If we bump the value in (r− 1, c ′), replace it with
Pr,c, and remove the (r, c) box, then we still have a monotone Young tableau. Now if r− 1 = 1,
set ym = Pr−1,c ′ , the bumped value. If r− 1 > 1, then we use the same procedure to bump a
value in row r− 2, replacing it with Pr−1.c ′ . We continue bumping until we have bumped a
value from row 1, which we assign to ym.

Call the resulting tableaux P (m−1), and let Q(m−1) be Q with the m-square removed. We
apply the same procedure to the m− 1 box in Q(m−1), eventually finding ym−1 as the value
bumped from row 1. Continue until we have (y1, . . . ,ym), which since P contained the inte-
gers 1 to m, is in Pm.
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Thus we have that Pm and the set of pairs (P ,Q) as in Lemma 8.2 are in one-to-one
correspondence. To determine the length of the longest increasing subsequence in y, we need
only the length of the corresponding tableau P (or Q), which is a function of just the shape of
P . Recall that the shapes are in one-to-one correspondence with the possible partitions of the
integer m. Thus a key to finding the null distribution of the length of the longest increasing
subsequence of Y is to count the number of y associated with a particular shape. Fortunately,
there is an easily-applied formula, using the hook length formula, which counts the number
of standard Young tableau of a given shape.

First we define hooks. For a Young diagram, the hook for a particular cell is a set consisting
of the cell itself, plus the cells directly below and directly to the right of it. The hook length
for a cell is the number of cells in its hook. The table below shows a diagram with the hook
lengths in the cells. So, for example, cell (1,2) has hook = {(1,2), (1,3), (1,4), (1,5), (2,2), (3,2)},
hence its hook length is 6.

8 6 5 2 1
5 3 2
4 2 1
1

(8.12)

The next lemma is due to Frame, de B. Robinson, & Thrall (1954).

Lemma 8.3. For a given Young diagram with m cells and shape λ, the number of standard Young
tableaux with entries 1, . . . ,m of shape λ is given by

F(λ) =
m!∏

cells (i,j) hi,j
, where hi,j = hook length of cell (i, j). (8.13)

The proof is in Section 8.3.1. The number of y ∈ Pm whose P or Q is of a given shape
is then simply the number of such P times the number of such Q, i.e., F(λ)2. Dividing by
m! yields the probability of λ. Then the distribution of the length of the longest increasing
subsequence is the marginal of λ1.

Proposition 8.4. If Y ∼ Uniform(Pm), for shape λ with m cells,

P[Y has shape λ] =
1
m!
F(λ)2, (8.14)

and if L = length of longest increasing subsequence of Y , then

P[L = l] =
∑
λ | λ1=l

1
m!
F(λ)2. (8.15)

Baer & Brock (1968) used this idea to generate the exact distribution up to m = 36, and
Odlyzko & Rains (2000) pushed it to m = 120.

To implement the proposition, we need an efficient method for running through all the
partitions of m. Stojmenović & Zoghbi (1998) give an overview of such algorithms. We will
use one of theirs called ZS1. It is based on an idea common to many proposed algorithms,
which they have determined first appeared in Stockmal (1962). The partitions are generated
in anti-lexicographical order, which is the numerical analog of reverse alphabetical order. If
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λ and δ are both partitions of m, then λ < δ in the anti-lexicographical ordering if for some
index j, λi = δi for i < j, and λj > δj. For example, with m = 6, the partitions in this order are

(6) < (5, 1) < (4, 2) < (4, 1, 1) < (3, 3) < (3, 2, 1)
< (3, 1, 1, 1) < (2, 2, 2) < (2, 2, 1, 1) < (2, 1, 1, 1, 1) < (1, 1, 1, 1, 1, 1). (8.16)

The basic algorithm starts with λ(1) = (m). Then for each i > 1, λ(i+1) is obtained from λ(i)

by finding the right-most element greater than 1, decreasing it by 1, summing 1 plus the ele-
ments to its right (which are all 1’s); then distributing the sum in the most anti-lexicographical
way possible while respecting the monotonicity of the partition. For example, supposem = 14
and λ(i) = (6, 4, 1, 1, 1, 1). For the next partition, we decrease the 4 by 1, then add that 1
to the other four 1’s. This 5 is then distributed to the left of the 3, hence must be 3, 2:
λ(i+1) = (6, 3, 3, 2). The algorithm stops when the partition is (1, 1, . . . , 1). Symbolically, at step
i, if we haven’t stopped, let ki be the length of λ(i), and hi be the index for which λ(i)hi > 1 and

λ
(i)
h = 1 for h > hi. Then

λ
(i+1)
h = λ

(i)
h if h < hi and λ

(i+1)
hi

= λ
(i)
hi

− 1. (8.17)

Let li = 1 + ki − hi, the part of m still to be allotted. The largest the elements to the right
of the hthi can be is λ(i+1)

hi
, hence we do integer division to find the integers di and ri ∈

{0, . . . , λ(i+1)
hi

− 1} such that

li = diλ
(i+1)
hi

+ ri. (8.18)

Then we set
λ
(i+1)
hi+1 = · · · = λ(i+1)

hi+di
= λ

(i+1)
hi

and if ri > 0, λ(i+1)
hi+di+1 = ri. (8.19)

We now have ki+1 = hi + di + I[ri > 0].
Notice that if λ(i)hi = 2, then the algorithm can skip the adding and dividing steps. After

(8.17), we just add a 1 to the end, so that ki+1 = ki + 1 and λ
(i+1)
h = 1 for hi < h 6 ki+1.

Stojmenović & Zoghbi exploit this simplification, showing that having 2 be the target value
occurs very frequently: In 66% of partitions for m = 30 and 78% for m = 90, the percentage
asymptotically approaching 100%. They show empirically for m = 75 that this modification
speeds up the algorithm by a factor of four.

We use the SZ1 algorithm to run through the partitions, then find the hook lengths and
the product for each partition generated, to calculate (8.15). There may be further efficiencies
by modifying the hook length product along with updating the partitions.

8.3.1 Proof of hook length formula

There have been a number of proofs of the hook length formula since first discovered by
Frame, de B. Robinson, & Thrall (1954). Here we present a fun probabilistic one by Greene,
Nijenhuis, & Wilf (1979).

The proof uses induction on m. It is clear that the hook length formula is valid for the
m = 1 case. Assume it is valid for any tableau with m − 1 cells. Consider the diagram
with m cells and shape λ = (λ1, . . . , λr). Any standard Young tableau with values 1, . . . ,m
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will have the largest value m in one of the corner cells, say at the end of row r∗. If we
remove that cell, then we have a standard Young tableau containing the values 1, . . . ,m− 1
with shape λr∗ the same as the original, except for row r∗ being one cell shorter: λr∗ =
(λ1, . . . , λr∗−1, λr∗ − 1, λr∗+1, . . . , λr). (For illustrations, consider any of the tables in (8.11), and
remove the cell with the largest value. What remains is a standard tableau.) Thus the number
of standard tableaux of shape λ with m in the corner of row r∗ is the same as the number
of standard tableaux with shape λr∗ , which by the induction hypothesis is F(λr∗) in (8.13).
Then the number of standard tableau corresponding to the shape λ is the sum of such values,
adding over the possible corners in which the m falls. The induction step is to show that this
number is F(λ):

F(λ) =
∑

r∗ | row r∗ in λ contains a corner cell

F(λr∗). (8.20)

Greene, Nijenhuis, & Wilf approach the problem by defining a random walk over the cells
of the diagram which always ends in one of the corners, say (R,C). They show that

p(r∗, c∗) ≡ P[Random walk ends with (R,C) = (r∗, c∗)] =
F(λr∗)

F(λ)
if (r∗, c∗) is a corner cell.

(8.21)
Because the probabilities sum to 1, (8.21) implies (8.20).

The random walk proceeds as follows:

• Step 1: Start in cell (r1, c1) ∈ D with probability 1
m . If (r1, c1) is a corner cell, then stop

and set (R,C) = (r1, c1). Otherwise, go to the next step.

• Step i+ 1: Let Hri,ci be the hook for (ri, ci). Since we have not stopped, (ri, ci) must not
be a corner cell, hence there must be at least two cells in the hook. Randomly choose
a cell from Hri,ci − {(ri, ci)}, each with probability 1/(hri,ci − 1). Call it (ri+1, ci+1). If it
is a corner cell, then stop and set (R,C) = (ri+1, ci+1). Otherwise, repeat this step with
i→ i+ 1.

Note that at each step, we increase either the row index or the column index by at least 1.
Thus there can be only a finite number of steps. We need to verify (8.21). Consider the ratio
F(λr∗)/F(λ) for (r∗, c∗) a corner cell. Since it is a corner, the only hook lengths that will be
different in λr∗ than in λ will be those in row r∗ or column c∗, each of which will have their
hook lengths decrease by 1. In (8.22), we see removing the corner (r∗, c∗) = (3, 3) decreases
the hook lengths in column 3 and row 3 by 1.

λ :

8 6 5 2 1
5 3 2
4 2 1
1

−→ λr∗ :

8 6 4 2 1
5 3 1
3 1
1

(8.22)

Note also that the hook lengths of the corners is always 1. Thus from (8.13),

F(λr∗)

F(λ)
=

1
m

r∗−1∏
r=1

hr,c∗

hr,c∗ − 1

c∗−1∏
c=1

hr∗,c

hr∗,c − 1
. (8.23)
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To show (8.21) for given corner (r∗, c∗), we need to sum up the probabilities of all the
paths that lead to that corner. We will sort the paths into groups depending on the rows and
columns they visit. A path p starts at cell (r1, c1), say, and proceeds through (possibly) several
cells until arriving at the corner:

p = (r1, c1)→ (r2, c2)→ · · · → (rt, ct) = (r∗, c∗). (8.24)

Since each step in the random walk is either to the right or down, ri 6 r∗ and ci 6 c∗. Also,
one of the row index or column index stays the same, and the other increases, for consecutive
cells in the path:

For each i = 1, . . . , t− 1, either ri+1 = ri & ci+1 > ci or ri+1 > ri & ci+1 = ci. (8.25)

For any such path p, let (row(p), col(p)) be the row and column projections, i.e., the sets of
indices of the rows and columns the path hits:

row(p) = {r1, . . . , rt} & col(p) = {c1, . . . , ct}. (8.26)

The sets do not contain multiple elements of the same value, so that if the path is (1, 3) →
(1, 5)→ (4, 5)→ (6, 5), we would have (row(p), col(p)) = ({1, 4, 6}, {3, 5}).

Now let (R,C) be any pair of subsets such that

r∗ ∈ R ⊂ {1, . . . , r∗} and c∗ ∈ C ⊂ {1, . . . , c∗}. (8.27)

(There will be at least one path that has (R,C) as its projections for such pairs.) Denote
r1 = min(R) and c1 = min(C), so that (r1, c1) is the starting point of any of its paths. Lemma
3 in Greene, Nijenhuis, & Wilf (1979) shows that if P = (P1 → . . .→ Pt) is a random path,

P[(row(P ), col(P )) = (R,C) |P1 = (r1, c1)] =
∏

r∈R−{r∗}

1
hr,c∗ − 1

∏
c∈C−{c∗}

1
hr∗,c − 1

≡ q(R,C), (8.28)

where the product over the empty set is 1. (It is interesting that given the starting point, the
rows the path hit are independent of the columns hit.) We again use induction, now on the
path length t. Note that for given projections (R,C), the corresponding paths have length
t = #R+ #C− 1. If t = 1, then the path must be (r∗, c∗) itself, hence the probability we start on
that corner is 1

m , which checks.
Next, assume (8.28) holds for paths of length less than t. The second step in any such path

must be to either (r1, c2) where c2 ∈ min(C− {c1}), or to (r2, c1), where r2 = min(R− {r1}),
either of which has transition probability 1/(hr1,c1 − 1). Subsequent steps would then have a
path with projection either (R,C− {c1}) or (R− {r1},C), which has length t− 1. Thus by the
Markov property of the random walk, and the induction hypothesis on q,

P[(row(P ), col(P )) = (R,C) |P1 = (r1, c1)] = P[P2 = (r1, c2) |P1 = (r1, c1)]q(R,C− {c1})

+ P[P2 = (r2, c1) |P1 = (r1, c1)]q(R− {r1},C)

=
1

hr1,c1 − 1
(q(R,C− {c1}) + q(R− {r1},C)). (8.29)
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By (8.28),

q(R,C− {c1}) = (hr∗,c1 − 1)q(R,C) and q(R− {r1},C)) = (hr1,c∗ − 1)q(R,C), (8.30)

hence

P[(row(P ), col(P )) = (R,C) |P1 = (r1, c1)] =
hr∗,c1 − 1 + hr1,c∗ − 1

hr1,c1 − 1
q(R,C). (8.31)

It is not hard to see that hr1,c1 = hr∗,c1 + hr1,c∗ − 1 by looking at an example. In (8.32) take
(r1, c1) = (2, 1) and the corner (r∗, c∗) = (5, 3).

a a ab ab ab ab
a b
a b
ac c bc
ac
ac

(8.32)

The cells in the hook for A = (r1, c1) are labelled “a,” and those for cells B = (r1, c∗) and
C = (r∗, c1) are labelled “b” and “c,” respectively. Counting, we see that #a = #b+ #c− 1, as
desired. The formal proof would proceed by noting the cells at (r1, c∗) and to the left are in
the hooks for A and B; the cells at (r∗, c1) and below are in the hooks for A and C; the number
of cells between columns c1 + 1 and c∗ − 1 are the same for A and C; and the number of cells
between rows r1 + 1 and r∗ − 1 are the same for A and B. Then only A has (r1, c1) in its hook,
and both B and C have (r∗, c∗) in their hooks. Thus we count one extra cell in the sum of the
B and C hooks.

Since we now have that the factor in (8.31) is 1, (8.28) holds.
Back to (8.21). The total probability that the random walk ends up in corner (r∗, c∗) is then

found by summing over the possible starting points and projections. Letting (R,C) run over
all pairs of sets as in (8.27), and setting (r1, c1) = (min(R), min(C)), we have

p(r∗, c∗) =
∑
(R,C)

P[(row(P ), col(P )) = (R,C) |P1 = (r1, c1)]P[P1 = (r1, c1)]

=
1
m

∑
(R,C)

q(R,C)

=
1
m

∑
(R,C)

 ∏
r∈R−{r∗}

1
hr,c∗ − 1

∏
c∈C−{c∗}

1
hr∗,c − 1

 (by (8.28))

=
1
m

∑
R

 ∏
r∈R−{r∗}

1
hr,c∗ − 1

×∑
C

 ∏
c∈C−{c∗}

1
hr∗,c − 1

 . (8.33)

The first summation is the sum over all subsets of {1, . . . , r∗ − 1} (including the empty set) of
the product of the 1/(hr,c∗ − 1)’s for r in each subset, which is the expansion of the product of
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all (1 + 1/(hr,c∗ − 1))’s. Similarly for the second summation. Thus

p(r∗, c∗) =
1
m

r∗−1∏
r=1

(
1 +

1
hr,c∗ − 1

) c∗−1∏
c=1

(
1 +

1
hr∗,c − 1

)
=
F(λr∗)

F(λ)
, (8.34)

by (8.23), proving (8.21), hence the hook length formula, Lemma 8.3.

8.4 Approximations and asymptotics
The asymptotic distribution of Ulam’s distance, or actually of Lm, the length of the longest
increasing subsequence, has an interesting and surprisingly recent history. Baik, Deift, &
Johansson (1999) show that as m→∞,

Lm − 2
√
m

m1/6 −→ Z, (8.35)

where Z has the Tracy-Widom distribution (Tracy & Widom, 1994) with parameter β = 2. The
definition of this distribution is rather involved, so we refer the reader to the Tracy-Widom
article or, more briefly, to the Wikipedia article (Wikipedia contributors, 2018b). Figure 8.1
exhibits the density, calculated using the function dtw from the R package RMTstat (Johnstone,
Ma, Perry, & Shahram, 2014). It looks fairly symmetric, but is actually slightly skewed. The
first four summary statistics have been found by Bornemann (2010), Table 4:

Mean Variance Skewness Kurtosis
−1.7710868074 0.8131947928 0.2240842036 0.0934480876 (8.36)

The skewness is the normalized third central moment, and the kurtosis is the normalized
fourth central moment minus 3. The Tracy-Widom distributions arose originally from study-
ing the asymptotic distributions of the largest eigenvalue of certain random matrices. The
β = 2 indicates the matrices are random complex normal hermitian matrices.

Rather than trying to present a proof of (8.35), we will present a brief history of the result.
For more discussion, insights, and references, see Aldous & Diaconis (1999), Wellner (2002),
and Romik (2015), this last being a thorough and comprehensive book on the mathematical
background and results surrounding the study of the distribution of Lm.

Stanislaw Ulam, the famous physicist and mathematician, among myriad other achieve-
ments, pioneered the idea of using Monte Carlo simulations to estimate intractable distribu-
tions of random variable. See Metropolis & Ulam (1949). Ulam (1961) noted a Monte Carlo
experiment (by an E. Neighbor) to study the distribution of the lengths of longest monotone
(increasing or decreasing) subsequences in permutations. Baer & Brock (1968) used Monte
Carlo to conjecture that

E[Lm]√
m
−→ 2. (8.37)

Hammersley (1972) picked up on this problem, showing that asm→∞, there exists a constant
c such that

Lm√
m
−→ c in probability. (8.38)



DRAFT

8.4. APPROXIMATIONS AND ASYMPTOTICS 89

−6 −4 −2 0 2

0.
0

0.
1

0.
2

0.
3

0.
4

dt
w

(z
, 2

)

D
en

si
ty

z

Figure 8.1: The Tracy-Widom density.

He also showed that π/2 6 c 6 e, and, using Monte Carlo and other methods, suggested
strongly that c = 2. Later, Logan & Shepp (1977) and Vershik & Kerov (1977) verified (8.37)
conclusively.

The next challenge was to find the asymptotic variance of Lm. Using analysis, Kim (1996)
conjectured that the variance would be of order n1/3, as did Odlyzko & Rains (2000) and
Wellner (2002) from extensive simulations, also proposing (8.35) for some Z. These conjectures
were soon confirmed by Baik, Deift, & Johansson (1999), who showed that the Z had the Tracy
-Widom distribution.

The simulations in Wellner (2002) suggest that the behavior of the empirical distribution
is close to that predicted by the theoretical results only when m is quite large, say over 105 or
106. Figure 8.2 compares the actual or estimated density of Lm to the approximation using the
Tracy-Widom distribution suggested by the asymptotic result (8.35). These plots show that
the Tracy-Widom density is slightly to the left of the empirical density, even for m = 107.

Chiani (2014) showed that a shifted gamma distribution can approximate the Tracy-Widom
distribution very well. We use the idea to approximate the distribution of the Ulam distance,
where the gamma parameters depend on m. Let Y ∼ Gamma(α, θ), where α is the shape
parameter and θ is the scale. Then we approximate the distribution of Lm by κ+ Y for the
shift parameter κ. We use the method of moments. Let the estimated mean, variance, and
skewness for Lm be µ̂, σ̂2, and γ̂, respectively. Then solving for (α, θ, κ):

µ̂ = κ+ E[Y] = κ+αθ, σ̂2 = Var[Y] = αθ2, γ̂ = Skewness(Y) =
2√
α

=⇒ α =
4
γ̂2 , θ =

σ̂√
α

, κ = µ̂−αθ. (8.39)
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Figure 8.2: The Tracy-Widom density compared to the observed density of Lm. The spikes
indicate the exact probabilities (P[Lm = x]) for m = 100, and the estimated probabilities from
simulations by Wellner (2002) for m > 1000. The smooth curves represent the Tracy-Widom
approximation to the density.



DRAFT

8.4. APPROXIMATIONS AND ASYMPTOTICS 91

10 15 20 25

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

x

p[
x]

D
en

si
ty

x

m = 102

50 55 60 65 70

0.
00

0.
05

0.
10

0.
15

x

p

D
en

si
ty

x

m = 103

180 185 190 195 200 205 210

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

x

p

D
en

si
ty

x

m = 104

600 610 620 630 640

0.
00

0.
02

0.
04

0.
06

x

p

D
en

si
ty

x

m = 105

1950 1970 1990 2010

0.
00

0.
01

0.
02

0.
03

0.
04

p

D
en

si
ty

x

m = 106

6260 6280 6300 6320 6340 6360

0.
00

0
0.

01
0

0.
02

0
0.

03
0

p

D
en

si
ty

x

m = 107

Figure 8.3: The gamma density compared to the observed density of Lm. The spikes indicate
the exact probabilities (P[Lm = x]) for m = 100, and the estimated probabilities from simula-
tions by Wellner (2002) for m > 1000. The smooth curves represent the gamma approximation
to the density.
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For m 6 150, we can calculate the moments exactly. For larger m, we use the simulations
in Wellner (2002). To smooth out the estimated moments, and to interpolate, we use linear
regression to find models for the moments, so that upon finding the coefficients using least
squares, we have the models for the mean and variance suggested by (8.35):

µ̂m = β̂0 + β̂1
√
m+ β̂2m

1/6 and σ̂2
m = β̂∗0 + β̂

∗
1m

1/3. (8.40)

We used a simple average for the skewness. We ran separate regressions for batches of m
depending on the exponents in scientific notation, i.e., one batch usedm = 102, 2×102, . . . , 103,
the next m = 103, 2× 103, . . . , 104, etc. Figure 8.3 has the analogous plots to those in Figure 8.2
for our gamma approximations. Visually, we see that the gamma does do better, especially
for m 6 105 or 106.

To summarize the graphs, we found the maximum and sum of absolute discrepancies of
the observed probabilities and the smooth densities. Figure 8.4 compares the results using
Tracy-Widom and gamma approximations for m between 102 and 107. Table (8.42) summa-
rizes the graphs, averaging over groups ofm’s. We see that the gamma approximation is better
for maximum discrepancy for m 6 105, and for the sum of discrepancies for m 6 106. For
the sum of discrepancies, we also included a benchmark based on the expected sum. That is,
for X ∼ MultinomialK(n,p) (multinomial with K categories and n observations), we calculate
using the normal approximation

K∑
k=1

E|Xk/n− pk| ≈
√

2
πn

K∑
k=1

√
pk(1 − pk). (8.41)

We used the gamma density to approximate the p for each m, and here n = 10, 000, the size
of the simulations. Note that the gamma approximation in Figure 8.4 tracks the benchmark
quite closely, meaning it is about as accurate as we can obtain using the simulations.

Maximum discrepancy

m Tracy-Widom Gamma Tracy-Widom
Gamma

102 − 103 0.0314 0.0046 6.8013
103 − 104 0.0142 0.0051 2.7544
104 − 105 0.0078 0.0048 1.6239
105 − 106 0.0050 0.0042 1.1918
106 − 107 0.0043 0.0039 1.1135

Total discrepancy

m Tracy-Widom Gamma Benchmark Tracy-Widom
Gamma

Gamma
Benchmark

102 − 103 0.2045 0.0225 0.0253 9.0949 0.8884
103 − 104 0.1245 0.0326 0.0321 3.8164 1.0173
104 − 105 0.0893 0.0410 0.0398 2.1796 1.0292
105 − 106 0.0658 0.0478 0.0488 1.3774 0.9789
106 − 107 0.0709 0.0627 0.0595 1.1317 1.0535

(8.42)
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Figure 8.4: The discrepancy between the observed and approximate density of Lm. The top
graph compares the Tracy-Widom approximation to that of the gamma using the maximum
discrepancy. The bottom graph compares them on the sum of the discrepancies. The latter
also exhibits the estimated expected sum of discrepancies of the simulations from the true
probabilities.
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Cayley’s distance

There are two distinct (though equivalent) approaches to calculating Cayley’s distance: count-
ing the number of cycles subtracted from m, or counting the number of interchanges. The
latter is useful for finding exact and asymptotic distributions and moments, while the former
is faster for actually calculating the distance.

For a vector y ∈ Pm, a cycle is a vector of indices (i1, . . . , ik) such that

yij = ij+1 , j = 1, . . . ,k, and yik = i1. (9.1)

For example, if y = (4, 1, 6, 2, 5, 3), then

y1 = 4, y4 = 2, y2 = 1 ⇒ C1 = (1, 4, 2) is a cycle;
y3 = 6, y6 = 3 ⇒ C2 = (3, 6) is a cycle;

y5 = 5 ⇒ C3 = (5) is a cycle. (9.2)

Note that we can cycle the cycles, i.e., (4, 2, 1) and (2, 1, 4) are also cycles, but are considered
to be equivalent to (1, 4, 2). (Also equivalent are (3, 6) and (6, 3).) Any y can be uniquely (up
to equivalence) decomposed into a set of cycles. Cayley’s distance is then defined as

dCay(y,ω) = m− #Cycles(y). (9.3)

For the above, dCay(4, 1, 6, 2, 5, 3)) = 6 − 3 = 3.
Recall as in (6.3) that Kendall’s distance between y and ω = (1, . . . ,m) is the minimum

number of adjacent interchanges of elements of y needed to obtain ω. Cayley’s distance is the
minimum number of interchanges as well, but is not restricted to adjacent. For example, with
the above y:

Kendall : (4, 1, 6, 2, 5, 3)→ (1, 4, 6, 2, 5, 3)→ (1, 4, 2, 6, 5, 3)→ (1, 2, 4, 6, 5, 3)
→ (1, 2, 4, 6, 3, 5)→ (1, 2, 4, 3, 6, 5)→ (1, 2, 3, 4, 6, 5)→ (1, 2, 3, 4, 5, 6)

Cayley : (4, 1, 6, 2, 5, 3)→ (2, 1, 6, 4, 5, 3)→ (1, 2, 6, 4, 5, 3)→ (1, 2, 3, 4, 5, 6)
(9.4)

So dKen(y,ω) = 7, while dCay(y,ω) = 3 as before.
The two methods for Cayley’s distance can be seen to yield the same distance. Note that

in order to arrange y in order, each of the cycles has to be arranged in order. The minimum

95
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number of interchanges to arrange a cycle Cl in order is #Cl−1. Hence with L = #Cycles, the
total number of interchanges is

L∑
l=1

(#Cl − 1) = m− L = dCay(y,ω), (9.5)

since lengths of the cycles must sum to the number of objects.
In Section 9.1 we present a decomposition of Cayley’s distance based on interchanges

as in (9.4). This representation facilitates finding moments, the exact distribution, and the
asymptotic normality.

9.1 Decomposition
Feller (1968, page 257–258) and Diaconis (1988, page 118) show that Cayley’s distance can be
written as a sum of independent Bernoulli’s. Consider the interchange algorithm as in (9.4).
We start by making an interchange, if necessary, so that y1 = 1. Next, we make the interchange
so that y2 = 2. We continue until ym−1 = m− 1, which necessitates that ym = m. Then vi is
the indicator function of having actually made a switch at stage i, and Cayley’s distance is

DCay ≡ dCay(Y ,ω) =
m−1∑
i=1

Vi. (9.6)

More formally, let y(0) = y. For i = 1, . . . ,m− 1, we obtain y(i) from y(i−1) by switching (if
necessary) the ith element with the element equalling k:

y
(i)
k = y

(i−1)
k for k ∈ {1, . . . ,m}− {i, j(i)} where y

(i−1)
j(i)

= i;

y
(i)
i = i;

y
(i)
j(i)

= y
(i−1)
i . (9.7)

A switch is made at stage i if y(i−1)
i 6= i (i.e., j(i) 6= i). Assume Y ∼ Uniform(Pm). The

indicator function of a switch at stage i is

Vi = I[Y
(i−1)
i 6= i]. (9.8)

Since Y (i−1)
i = i for i = 1, . . . , i−1 (if i > 1), the chance that Y(i−1)

i = i is 1/(m− i+ 1). The Vi
can also be shown to be independent, since how Y

(i)
i came to equal i does not affect the order

of Y(i)i+1, . . . ,Y(i)m , which implies that

V1, . . . ,Vm−1 are independent, Vi ∼ Bernoulli
(

1 −
1

m− i+ 1

)
. (9.9)

Thus as for Kendall’s distance, it is easy to find the mean, variance, a convolution formula
for the exact distribution, and asymptotic approximations for DCay.
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9.2 Moments and cumulants

Since the mean and variance of a Bernoulli(p) are p and p(1 − p), respectively, (9.9) gives us

E[DCay] =

m−1∑
i=1

E[Vi] =

m−1∑
i=1

(
1 −

1
m− i+ 1

)
= m− 1 −

m∑
i=2

1
i
= m−H

(1)
m , and

Var[DCay] =

m−1∑
i=1

Var[Vi] =

m−1∑
i=1

1
m− i+ 1

(
1 −

1
m− i+ 1

)
=

m∑
i=2

i− 1
i2

= H
(1)
m −H

(2)
m , (9.10)

where H(k)
m is the generalized harmonic function

H
(k)
m =

m∑
i=1

1
ik

. (9.11)

To find higher moments and cumulants, it appears easiest to start with the raw moments
of the Vi, find the cumulants of the Vi, then sum over i to find the cumulants of DCay. We can
then obtain the moments from the cumulants. None of these quantities seem to have a very
compact expression owing to the harmonic functions present. We do not present Mathematica
functions because they just express everything in terms of the H(k)

m ’s.
Start with W ∼ Bernoulli(p), so that µ ′n(p) = E[Wn] = p for any n > 1. Using (2.17), we

have that the nth cumulant of W is

κn(p) = n!
∑
k∈An

(−1)k
∗−1(k∗ − 1)!

n∏
l=1

1
kl!

(p
l!

)kl
= n!

∑
k∈An

pk
∗
(−1)k

∗−1(k∗ − 1)!
n∏
l=1

1
kl!

(
1
l!

)kl
. (9.12)

As in (2.14) and (2.15), An is the set of vectors of nonnegative integers k for which
∑
lkl = n,

and k∗ =
∑
kl. We will rewrite things a bit. First, add Vm to the sum in (9.6), where by (9.9),

Vm ≡ 0. Then consider

D∗Cay ≡ m−DCay = m−

m∑
i=1

Vi =

m∑
i=1

Wi, where Wi = 1 − Vm−i+1 ∼ Bernoulli
(

1
i

)
. (9.13)

If κn and κ∗n are the nth cumulants of DCay and D∗Cay, respectively, we have

κn = (−1)nκ∗n, n > 2. (9.14)

Since the Vi are independent, so are the Wi, hence the nth cumulant of D∗Cay sums over the
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appropriate κn(p):

κ∗n =

m∑
i=1

κn

(
1
i

)

=

m∑
i=1

n!
∑
k∈An

(
1
i

)k∗
(−1)k

∗−1(k∗ − 1)!
n∏
l=1

1
kl!

(
1
l!

)kl
= n!

∑
k∈An

H
(k∗)
m (−1)k

∗−1(k∗ − 1)!
n∏
l=1

1
kl!

(
1
l!

)kl
. (9.15)

See (9.11).

9.3 Normal and Edgeworth approximations
To prove asymptotic normality, we again appeal to the Lindeberg-Feller theorem, Theorem
6.1. For the Wi in (9.13),

m−1∑
i=1

E[|Vi − E[Vi]|]
ν =

m∑
i=1

E[|Wi − E[Wi]|]
ν. (9.16)

By the triangle inequality, and noting that the Wi’s are nonnegative,

|Wi − E[Wi]| 6Wi + E[Wi] ⇒ E[|Wi − E[Wi]|]
ν 6 2νE[Wi]

ν = 2νH(ν)
m . (9.17)

Thus by (9.10), ∑m−1
i=1 E[|Vi − E[Vi]|]

ν

Var[DCay]ν/2 6 2ν
H

(ν)
m

(H
(1)
m −H

(2)
m )ν/2

. (9.18)

Since H(1)
m is asymptotically log(m) as m → ∞, and H(ν)

m is bounded in m for ν > 1, the ratio
in (9.18) goes to zero for any ν > 1. Thus the theorem shows that

DCay − E[DCay]√
Var[DCay]

−→ N(0, 1) as m→∞. (9.19)

We tested the Edgeworth approximations for L = 0, . . . , 10 terms, for m up to 10,000. Even
for m = 10, 000, the Edgeworth expansion is not much faster than the exact algorithm, so it is
reasonable to use the latter when available. The density version of the Edgeworth expansions
were better than those using the distribution-function-based version, especially for larger L,
so we will restrict discussion to the density-based ones. From (9.15), we can see that the
nth cumulant is a linear combination of the harmonic functions H(i)

m for i = 1, . . . ,n, and the
coefficient for H(1)

m is one (using k with “1” in the nth slot and zeroes elsewhere). Thus all
the cumulants are asymptotic to log(m), and the nth normalized cumulant is asymptotic to
log(m)1−n/2. This rate shows that the normalized cumulants decline very slowly in m, and
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reasonably log-linearly in n, suggesting that the Edgeworth expansion errors behave similarly.
Figures 9.1 for the errors in the density, 9.2 for the error in the distribution function (see (4.54)),
and 9.3 for the relative errors (see (4.55)), seem to bear out this idea.

The maximal errors for L = 10 terms are given in (9.20) for various values of m. Even
for m = 25, the approximation is quite good. The three types of error go from about
1×10−5, 6×10−6, and 0.01 for m = 50 to about 1.5×10−7, 7.5×10−8, and 0.0007 for m = 10, 000.

10 25 50 100 250

Density 0.000307 4.41×10−5 1.08×10−5 8.14×10−6 1×10−6

Distribution function 0.000255 2.72×10−5 6.07×10−6 4.76×10−6 5.84×10−7

p-value (relative) 0.229 0.012 0.0103 0.00429 0.0013

500 1000 1250 5000 10000

Density 1.09×10−6 6.97×10−7 5.02×10−7 1.96×10−7 1.47×10−7

Distribution function 6.23×10−7 4.25×10−7 3.47×10−7 1.18×10−7 7.42×10−8

p-value (relative) 0.00308 0.000888 0.000813 0.000592 0.000742

(9.20)

9.4 R code
The function cayley_cumulants(m,L) produces the first L cumulants of Cayley’s distance. It
uses the function pd from (2.53) to calculate the product term in (9.15) (with mom==1). We
use an approximation to the harmonic numbers in (9.11) that takes effect for larger values of n
and m. For n > 1, H(n)

m → ζ(n) as m→∞, where ζ is the Riemann zeta function (Wikipedia
contributors, 2018a). If the difference between the zeta function and the harmonic number is
estimated to be less than 10−20, then we use the zeta function. For the zeta function itself, we
use a numerical value accurate to twenty decimal places for 2 6 n 6 20, and for n > 20, just
use H(n)

10 .
The Edgeworth functions are cayley_edgeworthf and cayley_edgeworthF, which find the esti-

mated density and distribution function, respectively. The former is the preferable one. The
arguments are x,m,L,N, where x is the variable in f(x) or F(x), m is the number of objects, L is
the number of terms in the expansion, and N is the sample size. These functions rely on edgef
and edgeF from (2.5).
cayley_cumulants <− function(m,L=12) {

if(m<2) return(rep(0,L))
ii <− 1:m
mom <− rep(1,L)
kurt <− m−sum(1/ii)
A <− findA(L)
for(s in 2:L) {

krt <− 0
for(i in 1:nrow(A[[s]])) {

ku <− A[[s]][i,]
ks <− sum(ku)
krt <− krt + harmonic_number(m,ks)∗(−1)^(ks−1)∗factorial(ks−1)∗pd(ku,mom)
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}
kurt <− c(kurt,krt∗factorial(s)∗(−1)^s)

}
kurt

}

harmonic_number <− function(m,n) {
M <− min(m,10^((20−log10(n−1))/(n−1))+.5)
if(n>1&&m>M) return(zeta(n))
sum(1/(1:m)^n)

}

zeta <− function(n) {
if(n==1) {return(Inf)}
if(n>20) {return(sum(1/(1:10)^n))}
c(pi^2/6, 1.2020569031595942854,pi^4/90,1.0369277551433699263, pi^6/945,

1.0083492773819228268,pi^8/9450,1.0020083928260822144, pi^10/93555, 1.0004941886041194646,
(691∗pi^12)/638512875, 1.0001227133475784891,
(2∗pi^14)/18243225, 1.0000305882363070205,(3617∗pi^16)/325641566250, 1.0000076371976378998,
(43867∗pi^18)/38979295480125, 1.0000019082127165539,(174611∗pi^20)/1531329465290625)[n−1]

}

cayley_normalized_cumulants <− function(m,L=12) {
if(m<2) return(rep(0,L))
cc <− cayley_cumulants(m,L)
c(0,1,cc[−(1:2)]/cc[2]^((3:L)/2))

}

cayley_edgeworthf <− function(x,m,L=10,N=1) {
cum <− cayley_cumulants(m,L+2)
sigma <− sqrt(cum[2])
kum <− c(0,1,cum[−(1:2)]/sigma^(3:length(cum)))
z <− (x−cum[1])/sigma
dnorm(z)∗edgef(z,L,kum,N)/sigma

}

cayley_edgeworthF <− function(x,m,L=10,N=1) {
cum <− cayley_cumulants(m,L+2)
sigma <− sqrt(cum[2])
kum <− c(0,1,cum[−(1:2)]/sigma^(3:length(cum)))
z <− (x−cum[1]+.5)/sigma
pnorm(z) − dnorm(z)∗edgeF(z,L,kum,N)

}
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Figure 9.1: The maximum error in estimating the density for Kendall’s distance, as a function
of log10(m). The values are log10 of the MEdens; the lines depend on L, the number of terms
in the Edgeworth expansion.
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Figure 9.2: The maximum error in estimating the distribution function for Kendall’s distance,
as a function of log10(m). The values are log10 of the MEDF; the lines depend on L, the number
of terms in the Edgeworth expansion.
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Figure 9.3: The maximum relative error in estimating the p-value (for p-values > 0.00001) for
Kendall’s distance, as a function of log10(m). The values are log10 of the MREpv; the lines
depend on L, the number of terms in the Edgeworth expansion.
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Maximum distance

10.1 Introduction
We again take Y ∼ Uniform(Pm), but now consider the exact and asymptotic distribution of
dMax(Y ,ω), where ω is a fixed vector in Pm, and

dMax(y,ω) = Max{i=1,...,m}{|yi −ωi|}, (10.1)

the maximum elementwise difference of the two vectors. The distribution is the same for
any ω ∈ Pm, and in fact the same of as dMax(Y ,W ) for W any random vector over Pm
independent of Y . For convenience we can from now on take

ω = (1, 2, . . . ,m). (10.2)

If m is small (m 6 10, say), the exact distribution of DMax ≡ dMax(Y ,ω) can be found
reasonably quickly by enumerating over Pm. For m up to about 24, in Section 10.2 we present
a method based on one in the literature for finding the distribution of Spearman’s sum-of-
squares distance.

Section 10.3 has an expression for the distribution for values of dMax over m/2. If m is
large, the probability M > m/2 is very close to 1. This expression can be used to find an
asymptotic expansion of the distribution that works well for moderate m. It also leads the
way to the interesting asymptotic distribution (Section 10.7)

P

[
m−DMax√

m
6 x

]
−→ 1 − e−x

2
, x > 0. (10.3)

Equivalently, (DMax −m)2/m→ Exponential(1).

10.2 The exact distribution
For small m (m 6 10, say), the exact distribution can be found by calculating dMax(y,ω) ex-
plicitly for each y ∈ Pm. For slightly large values (11 6 m 6 24, for us), we can use the
method of treating subvectors of y separately, then combining the results, similar to the pro-
cess in Section 3.3 for Hoeffding distances. (There we convolved densities; here we multiply

103
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distribution functions.) Start with two subvectors. Choose m1 ≈ m/2, and for y ∈ Pm, let
y(1) = (y1, . . . ,ym1) and y(2) = (ym1+1, . . . ,ym), and similarly split up ω: ω(1) = (1, . . . ,m1),
ω(2) = (m1 + 1, . . . ,m). Then

dMax(y,ω) = max{dMax(y
(1),ω(1)),dMax(y

(2),ω(2))}. (10.4)

Recall the discussion around (3.27) to (3.30). We let R(1) be a subset of m1 distinct elements
from 1, . . . ,m, R(2) be its complement, {1, . . . ,m}−R(1), and

P(R(i)) = {permutations of elements in R(i)}. (10.5)

With Y ∼ Uniform(Pm) we again have that

Y (1) and Y (2) are independent given that Y (1) ∈ P(R(1)) (⇔ Y (2) ∈ P(R(2))), (10.6)

Y (1) | Y (1) ∈ P(R(1)) ∼ Uniform(P(R(1))),

Y (2) | Y (2) ∈ P(R(2)) ∼ Uniform(P(R(2))), (10.7)

and

R(1) ∼ Uniform({All possible subsets of m1 distinct elements from 1, . . . ,m}). (10.8)

Now let F(i)(x | R(i)) be the following conditional distribution function of dMax:

F(i)(x | R(i)) = P[dMax(Y
(i),ω(i)) 6 x |Y (1) ∈ P(R(1))], i = 1, 2. (10.9)

Then by (10.4) and the conditional independence in (10.6),

F(x | R(i)) = P[dMax(Y ,ω) 6 x |Y (1) ∈ P(R(1))]

= P[dMax(Y
(1),ω(1)) 6 x & dMax(Y

(2),ω(2)) 6 x |Y (1) ∈ P(R(1))]

= P[dMax(Y
(1),ω(1)) 6 x |Y (1) ∈ P(R(1))]P[dMax(Y

(2),ω(2)) 6 x |Y (1) ∈ P(R(1))]

= F(1)(x | R(1))F(2)(x | R(2)). (10.10)

Then the unconditional distribution function of dMax(Y ,ω) is found by taking the expectation
of the condition distribution function over R(i) in (10.8):

F(x) = P[dMax(Y ,ω) 6 x]

= E[F(1)(x | R(1))F(2)(x | R(2))]. (10.11)

Now for each splitting (R(1),R(2)), we find the distributions of dMax(y
(i),ω(i)) for y(i) ∈

P(R(i)), i = 1, 2, by enumeration:

P[dMax(Y
(i),ω(i)) = x |Y (i) ∈ P(R(i))] =

1
mi!

#{y(i) ∈ P(R(i)) |dMax(y
(i),ω(i)) = x}, (10.12)

where m2 = m−m1. We take the relevant cumulative sums to find the conditional F(i)’s, then
multiply the them as in (10.11). Then the final answer takes the average over the R(i)’s:

F(x) =

(
m

m1

)−1 ∑
splittings (R(1),R(2))

F(1)(x | R(1))F(2)(x | R(2)). (10.13)

As in Section 3.3, we can proceed with further splitting each R(i).
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10.3 An expression for the distribution
This section presents a useful expression for the distribution function ofDMax for values larger
than m/2. The range of DMax is {0, . . . ,m− 1}. We look at the distribution function for values
of DMax near m, using integer k:

F(m− k) = P[DMax 6 m− k], 1 6 k <
⌊m

2

⌋
+ 1. (10.14)

Note that
DMax 6 m− k if and only if |yi − i| 6 m− k, i = 1, . . . ,m. (10.15)

Then for each i, we can write out the values of yi that satisfy the inequality:

y1 ∈ {1, . . . ,m− k+ 1}
y2 ∈ {1, . . . ,m− k+ 2}

...
yk−1 ∈ {1, . . . ,m− 1}
yk : all of them

...
ym−k+1 : all of them
ym−k+2 ∈ {2, . . . ,m}

...
ym−1 ∈ {k− 1, . . . ,m}

ym ∈ {k, . . . ,m}. (10.16)

Since the yi’s for k 6 i 6 m− k+ 1 always satisfy the inequality, we can ignore them in our
calculations. Thus we have

P[DMax 6 m−k] = P[Yi 6 m−k+ i, i = 1, . . . ,k−1, and Yi > i−m+k, i = m−k+1, . . . ,m].
(10.17)

Let Y1 be the first set in the last probability, and Y2 be the second:

Y1 = {y |yi 6 m− k+ i, i = 1, . . . ,k− 1} &
Y2 = {y |yi > i−m+ k, i = m− k+ 1, . . . ,m}. (10.18)

For the rest of this section, we take k and m fixed. The marginal probabilities of these two
sets are fairly easy to find, and are equal. But they are not independent. So we will first find
P[Y1] explicitly, then an expression for P[Y2 | Y1].

Lemma 10.1. In the above setup,

P[Y1] =
(m− k+ 1)k−1

(m)k−1
. (10.19)

Here, (m)l = m(m− 1) · · · (m− l+ 1) = m!/l!.
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Proof. We proceed iteratively. P[Y1 6 m − k + 1] = (m − k + 1)/m, since Y1 is Uniform
({1, . . . ,m}). Given y1 6 m − k + 1, Y2 must be drawn from one of the m − 1 values left
that are less than or equal to m− k+ 2. Since whatever y1 is, it is less than m− k+ 2, there
are only m− k+ 1 left. Thus

P[Y2 6 m− k+ 2 |Y1 = y1, where y1 6 m− k+ 1] =
m− k+ 1
m− 1

. (10.20)

Now for Y3, we choose from m− 2 values, and two of the values in {1, . . . ,m− k+ 3} have
been removed. Thus again we are left with m− k+ 1 values that satisfy the inequality:

P[Y3 6 m− k+ 3 |Y1 = y1, Y2 = y2 where y1 6 m− k+ 1 & y2 6 m− k+ 2] =
m− k+ 1
m− 2

.

(10.21)
Continue if necessary for Yi, i = 4, . . . ,k− 1, each time obtaining a conditional probability of
(m− k+ 1)/(m− i+ 1). Multiplying those probabilities yields (10.19).

We can use the same approach on Ym, Ym−1, . . . ,Ym−k+2 (in that order) to show that P[Y2] =
P[Y1]. But P[Y2 | Y1] is more problematic, since the conditional probability

P[Y2 |Y1 = y1, . . . ,Yk−1 = yk−1, & Y1] (10.22)

depends on the specific values of y1, . . . ,yk−1. To whit, the next lemma:

Lemma 10.2. Fix y1, . . . ,yk−1, distinct values from {1, . . . ,m}. Then

P[Y2 |Y1 = y1, . . . ,Yk−1 = yk−1] =

∏k
a=2(m− k+ 1 − ca)

(m− k+ 1)k−1
, (10.23)

where
ca ≡ ca(y1, . . . ,yk−1) = #{yj > a, j = 1, . . . ,k− 1}. (10.24)

Proof. Start with P[Ym > k |Y1 = y1, . . . ,Yk−1 = yk−1]. There are conditionally m− k+ 1 values
left for Ym to choose from. Unconditionally, m− k+ 1 values satisfy the inequality Ym > k,
but conditionally ck have been taken from the set {k, . . . ,m}. Thus

P[Ym > k |Y1 = y1, . . . ,Yk−1 = yk−1] =
m− k+ 1 − ck
m− k+ 1

. (10.25)

Further condition on Ym = ym for ym > k. We want Ym−1 > k− 1. There is one fewer value
to choose from, i.e., m− k+ 1 − 1 = m− k. Initially there are m− k+ 2 values satisfying the
inequality, but ym has been taken by Ym, so there are m− k+ 1 left, then y1, . . . ,yk−1 have
taken ck−1 of them, yielding

P[Ym−1 > k− 1 |Y1 = y1, . . . ,Yk−1 = yk−1, Ym = ym,ym > k] =
m− k+ 1 − ck−1

m− k
. (10.26)

We continue, noting that for Yi > i−m+ k, the Yi+1, . . . ,Ym have removed m− i that satisfy
the inequality, and y1, . . . ,yk−1 have removed ci−m+k, hence there are m− (i−m+ k) + 1 −
(m− i) − ci−m+k = m− k+ 1 − ci−m+k left. Thus

P[Y2 |Y1 = y1, . . . ,Yk−1 = yk−1] =

∏m−k+2
i=m (m− k+ 1 − ci−m+k)

(m− k+ 1)k−1
, (10.27)

which by setting a = m− i+ 2 is the same as (10.23).
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Now let C2, . . . ,Ck be random variables whose distribution is that induced by Y via (10.24):

Ca = ca(Y1, . . . ,Yk−1), a = 2, . . . ,k. (10.28)

The main result of this section follows.

Proposition 10.3. For k 6 bm/2c+ 1,

P[DMax 6 m− k] =
E[
∏k
a=2(m− k+ 1 −Ca) | Y1]× (m− k+ 1)k−1

(m)2k−2
. (10.29)

Proof. Let Y (1) = (Y1, . . . ,Yk−1), and define y(1) similarly. Then

P[DMax 6 m− k] = P[Y1 ∩ Y2]

=
∑

y(1)∈Y1

P[Y (1) = y(1) & Y2]

=
∑

y(1)∈Y1

P[Y2 |Y
(1) = y(1)]P[Y (1) = y(1)]

=
∑

y(1)∈Y1

∏k
a=2(m− k+ 1 − ca(y

(1)))

(m− k+ 1)k−1
× 1

(m)k−1
, (10.30)

where the last equation uses (10.23) and the fact that P[Y (1) = y(1)] = 1/(m)k−1. The condi-
tional distribution of Y (1) given that it is in Y1 is uniform over Y1. Since #Y1 = (m− k+ 1)k−1,
we can rewrite (10.29) as

P[DMax 6 m− k] =

∑
y(1)∈Y1

∏k
a=2(m− k+ 1 − ca(y

(1)))

#Y1
× (m− k+ 1)k−1

(m− k+ 1)k−1(m)k−1
. (10.31)

The first term in that last expression is E[
∏k
a=2(m − k + 1 − Ca) | Y1], and (m)k−1(m − k +

1)k−1 = (m)2k−2, which proves (10.29).

If we had the exact conditional distribution of (C2, . . . ,Ck), given Y1, then we could find
the exact probability in (10.29). In the next section we use the proposition to find an approx-
imation to the probabilities for moderate m. Section 10.7 uses the proposition to prove the
asymptotic result in (10.3).

10.4 Approximation

Successive approximations to the probability in (10.14) can be obtained by expanding in a
Taylor series in the Ca’s around their E[Ca | Y1]’s, then taking the conditional expected value.
To that end, let

µa = E[Ca | Y1], Wa = Ca − µa, and set λ = m− k+ 1. (10.32)
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Expanding, or just multiplying out, we have

k∏
a=2

(λ− µa −wa) =

k∏
a=2

(λ− µa) −

k∑
a=2

waP[−{a}] +
∑

26a<b6k

wawbP[−{a,b}]

−
∑

26a<b<c6k

wawbwcP[−{a,b, c}]± · · ·+ (−1)k−1
k∏
i=2

wi, (10.33)

where we use the shorthand for a set of integers I,

P[−I] =
∏
a/∈I

(λ− µa) =

∏k
a=2(λ− µa)∏
a∈I(λ− µa)

. (10.34)

Take the conditional expected value over theWa’s on both sides of (10.33). Note that E[Wa | Y1] =
0. Then

E

[
k∏
a=2

(λ− µa −wa) | Y1

]
= (1 + s2 − s3 ± · · ·+ (−1)k−1sk−1)

k∏
a=2

(λ− µa), (10.35)

where

sl =
∑

26a1<a2<···<al6k
E

[
Wa1

λ− µa1

Wa2

λ− µa2

· · ·
Wal

λ− µal
| Y1

]
. (10.36)

To make use of the expansion, we need to at least be able to find some of the mixed
moments. The next lemma gives explicit expressions for the first, second, and third mixed
moments. The proof is in Section 10.6.

Lemma 10.4. Suppose 0 6 a < b < c 6 k 6 bm2 c+ 1. Then

µa ≡ E[Ca | Y1] = k− a+ (a− 1)
(

1 −
1
λ

)k−1

; (10.37)

µab ≡ E[CaCb | Y1] = (k− a)(k− b)

+ (b− 1 + (b− 2)(k− a) + a(k− b))
(

1 −
1
λ

)k−1

+ (a− 1)(b− 2)
(

1 −
2
λ

)k−1

; (10.38)

and

µabc ≡ E[CaCbCc | Y1] = (k− a)(k− b)(k− c) + (x0 + x1(k− 1) + x2(k− 1)2)

(
1 −

1
λ

)k−1

+ (y0 + y1(k− 1))
(

1 −
2
λ

)k−1

+ (a− 1)(b− 2)(c− 3)
(

1 −
3
λ

)k−1

, (10.39)
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where

x0 = (a− 1)(7 − 4c+ b(3c− 5)),
x1 = 4c− 9 − 2a(b+ c− 3) − b(2c− 5),
x2 = a+ b+ c− 3,
y0 = −(a− 1)(12 − 5c+ b(3c− 7)), and
y1 = (b− 2)(c− 3) + a(b+ c− 4). (10.40)

In Section 10.6.1 we present a roadmap for finding higher-order moments.
For fixed k, the Wa’s (2 6 a 6 k) are bounded since 0 6 Ca 6 k− 1, hence the term sl in

the expansion (10.35) is the sum of order kl terms, each of order 1/ml. Thus with k of order√
m we have that sl is of order 1/ml/2, showing that the expansion is reasonable. In Section

10.7 we consider asymptotics where k is of order
√
m as m→∞.

For very large m, the first-order approximation works well:

P̂[DMax 6 m− k] =
λk−1∏k

a=2(λ− µa)

(m)2k−2
. (10.41)

If k is very large as well, a quicker approximation is available. Stirling’s approximation to the
factorial is

n! =
√

2πnn+
1
2e−n

(
1 +O

(
1
n

))
. (10.42)

Taking logs in (10.41), we have

log(P̂[DMax 6 m− k]) = (k− 1) log(λ) +
k∑
a=2

log(λ− µa) − log(m!) + log((m− 2k+ 2)!)

≈ (k− 1) log(λ) +
k∑
a=2

log(λ− µa) − (m+ 1
2) log(m)

+ (m− 2k+ 21
2) log(m− 2k+ 2) + 2k− 2. (10.43)

The summation can be approximated using an integral. From (10.37) we see that µ1 is a linear
function of a, hence

k∑
a=2

log(λ− µa) ≈
∫k+1

2

1 1
2

log(c0 + c1a)da; c0 = k−

(
1 −

1
λ

)k−1

, c1 =

(
1 −

1
λ

)k−1

− 1. (10.44)

The indefinite integral of log(x) is x log(x) − x, hence

∫k+1
2

1 1
2

log(c0 + c1a)da = (λ− c0 − (k+ 1
2)c1) log(λ− c0 − (k+ 1

2)c1)

− (λ− c0 − 11
2c1) log(λ− c0 − 11

2c1) − k+ 1. (10.45)

Replacing the summation in (10.43) with (10.45), then exponentiating, yields the quick esti-
mate of the first-order estimate. It is accurate even for small m and k.
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10.5 Results of the approximations
For m 6 24, we can find the exact null distribution of DMax using the algorithm in Section
10.2. For larger m, we use the expansion in (10.35) up to the Jth term:

P[DMax 6 m− k] ≈ λ
k−1∏k

a=2(λ− µa)

(m)2k−2

1 +

J∑
j=2

(−1)jsj

 , (10.46)

for k 6 bm/2c+ 1, where λ = m− k+ 1. The approximation is best for large m and small k,
and in fact exact if k 6 J+ 1. The sj’s themselves become more time-consuming to calculate
as k and j increase. Our strategy is to use as large a J as is computationally quick, which we
take to be as follows:

J : 2 3 4 5 6
k : 13, 000 680 165 75 50 (10.47)

That is, if k 6 50 we take J = 6, if 50 < k 6 75 we take J = 5, etc.
The approximations are reasonable for not-too-small probabilities of P[DMax 6 m − k],

so are useful for testing hypotheses at the usual levels, but not accurate for large deviation
results. For moderate or larger m, the probabilities P[DMax 6 m− k] for k > k0 ≡ bm/2c+ 1
are very small. Here are some selected values for m between 25 and 100 and k = k0:

m 25 30 35 40
P̂[DMax 6 m− k0] 3.73× 10−4 3.73× 10−5 1.41× 10−5 1.31× 10−6

m 45 50 75 100
P̂[DMax 6 m− k0] 5.01× 10−7 4.04× 10−8 1.29× 10−11 4.05× 10−17

(10.48)

To estimate the probabilities P[DMax 6 m− k] for k > k0 (for which the expansion is not
valid), we use a couple of approaches. For 25 6 m 6 50, we use simulations for some of the
smaller k’s. We could simulate directly the distribution of DMax, but since we are interested
only in the values DMax 6 m− k0, relatively few simulations are of use. We could improve the
efficiency hugely by simulating directly conditioning on these values of DMax, but are unable
to find such an algorithm. We have found it easy to simulate from Y ∈ Y1 of (10.18) for k = k0.
For x 6 m− k0, dMax(y,ω) = x⇒ y ∈ Y1, hence

P[dMax(Y ,ω) = x |Y ∈ Y1] =
P[dMax(Y ,ω) = x]

P[Y1]
. (10.49)

Then with P̂Sim denoting the simulated conditional probability, we have the unconditional
approximation

P̂[dMax(Y ,ω) = x] = P̂Sim[dMax(Y ,ω) = x |Y ∈ Y1]
(m− k0 + 1)k0−1

(m)k0−1
(10.50)

by Lemma 10.1. This approach is substantially more efficient than direct simulation. For
example, for m = 25 and 107 simulated y’s, direct simulation yields about 2,400 of them in the
target area (less than or equal tom−k0), while the conditional approach expects about 4× 105.



DRAFT

10.5. RESULTS OF THE APPROXIMATIONS 111

●●●●
●●●●●

●●●
●●●●

●●●●●●
●●

●●●●●
●●

●●●●
● ●

●

●

●

●

0 2 4 6 8

0
2

4
6

8
10

12

Figure 10.1: The QQ plot.

For m = 50, the numbers are 22,700 and 0.26. We use this approximation for x < m− k0 for
which the simulation yields at least 100 observations at x.

Form > 50, and form 6 50 when the above simulation is too sparse, we use the asymptotic
distribution in (10.3) to estimate the ratio of the probabilities at the two values:

P̂[DMax 6 m− k] = P̂[DMax 6 m− k0]
e−(k−.5)2/m

e−(k0−.5)2/m
. (10.51)

To test out our approximations, for each of several values of m we simulate 108 y’s. We
have two evaluations: testing the fit using χ2’s, and estimating the absolute error using Bayes
analysis.

10.5.1 Testing goodness-of-fit

Here we compare the simulated distribution to the approximation using χ2 goodness-of-fit
tests. For given m, we looked at P[DMax = x] for x ∈ {m0, . . . ,m1}, where m0 is the smallest
values such that the expected counts is at least 5, i.e., the smallest integer such that P̂[DMax =
m0] > 5× 10−8, and m1 = m− 8 (because the algorithm is exact for x = m− 7, . . . ,m− 1).

The bottom line is that we did not see any systematic problems with the approximation.
Because we looked only at probabilities over 5× 10−8, we cannot claim anything about smaller
probabilities. Such large deviation results would need a different approach.

The m’s we use are 25, 26, . . . , 50, 60, . . . , 100, 150, 200, 300, 400, 500, 750, 1000, 2000,
5000, 10000. For each, we found the Pearson χ2 statistic. Summing those, we find a total
χ2 = 1101.34 on 1017 degrees of freedom, which yields a p-value of 0.0332. This value is fine,
maybe a little low. Using the Sellke-Bayarri-Berger calibration, this p-value yields a posterior
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probability of the null of 0.307 (= −e(p-value) log(p-value)), not small. Inspecting the 41
individual p-values, there are six below 0.01: 0.0024, 0.0106, 0.0286, 0.0498, 0.0756, and 0.0818.
The only worrisome one is the lowest, at least from a multiple-comparison’s viewpoint. Just
to check, we reran the simulations for the three m’s with lowest p-values (m = 28, 44, 90).
The rerun yielded p-values of 0.22, 0.82, and 0.97. So there does not seem to be anything
particularly concerning with these three values.

Figure 10.1 contains a QQ plot based on the p-values, where we used −2 log(p-value)’s,
which under the null they are approximately independent χ2

2’s, and the smallest p-values are
the largest in the transform. We again see that there is some lack of fit, but it is not too bad.

10.5.2 Assessing the absolute error

To estimate the absolute error in the approximations, we use a Bayes procedure. For given
m and x, let p = P[DMax = x], p̂ = P̂[DMax = x], our approximation to the probability, and
S be the observed number of simulated dMax(y,ω)’s that equal x (out of n = 108). Then
S ∼ Binomial(n,p), hence with a Beta(1

2 , 1
2 ) prior on p, we have the posterior

p |S = s ∼ Beta(a,b) where a = s+ 1
2 ,b = n− s+ 1

2 . (10.52)

Then letting b(x ; a,b) be the beta density and B(x ; a,b) the distribution function, the poste-
rior expected error is

epost ≡ E[|p̂− p| |S = s] =

∫
|p̂− p|b(p ; a,b)dp

=

∫ p̂
0
(p̂− p)b(p ; a,b)dp+

∫1

p̂
(p− p̂)b(p ; a,b)dp

= p̂

(∫ p̂
0
b(p ; a,b)dp−

∫1

p̂
b(p ; a,b)dp

)

−

(∫ p̂
0
pb(p ; a,b)dp−

∫1

p̂
pb(p ; a,b)dp

)
. (10.53)

For the beta,
xb(x ; a,b) =

a

a+ b
b(x ; a+ 1,b), (10.54)

hence
epost = p̂(2B(p̂ ; a,b) − 1) −

a

a+ b
(2B(p̂ ; a+ 1,b) − 1). (10.55)

As n → ∞, ePost goes to the absolute error in our approximation, thus it combines this error
with the uncertainty arising from the finite number of simulations. We expect it to be an
overestimate of the actual error. (The smallest ePost can be over p̂ is when p̂ equals the median
of the beta, which in our examples this minimum is generally at least half the observed ePost.)

We also look at the upper 95th percentile of the posterior of the absolute error. This value
is the point wα such that

1 −B(p̂+wα ; a,b) +B(p̂−wα, ; a,b) = α, (10.56)



DRAFT

10.5. RESULTS OF THE APPROXIMATIONS 113

65 70 75 80 85 90 95 100

−
8

−
7

−
6

−
5

−
4

Observed
Expected
95th percentile

lo
g 1

0(
|E

rr
or

|)

x

Figure 10.2: The observed, expected, and 95th percentile of the absolute error, by x, for m =
100.

for α = 0.05. There doesn’t seem to be an automatic function that will solve for wα, so we
need a root-finding procedure. Bisection works nicely, which requires initial bounds for wα.
For a lower bound, we find the two quantiles qα and q1−α of the Beta(a,b). Then we must
have that

p̂+wα > q1−α and p̂−wα 6 qα ⇒ wα > max{q1−α − p̂, p̂− qα}. (10.57)

We have two extreme cases to consider. Note that by the final inequality above,

q1−α − p̂ > p̂ ⇒ wα > p̂ ⇒ B(p̂−wα ; a,b) = 0 ⇒ p̂+wα = q1−α. (10.58)

Similarly,

p̂− qα > 1 − p̂ ⇒ wα > 1 − p̂ ⇒ B(p̂+wα ; a,b) = 1 ⇒ p̂−wα = qα. (10.59)

Both the implication strings can be reversed, hence we have that

wα =

{
q1−α − p̂ if q1−α > 2p̂
p̂− qα if qα 6 2p̂− 1

. (10.60)

If neither of the above cases hold, then we have wα 6 min{p̂, 1− p̂}, and we use bisection with
this upper bound and the lower bound from (10.57).

For each m and x, we look at the observed absolute error between our approximation
of p ≡ P[DMax = x], p̂, and the estimate from the simulation (when np̂ > 5). We also
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Figure 10.3: The maximum 95th percentile of the absolute error, by m.

find the mean and 95th percentiles of the posterior distribution of the absolute error of our
approximation |p− p̂|. These three quantities track each other quite closely, with the observed
absolute error being less than the expected absolute error, which in turn is less than the 95th

percentile by a factor of about 2 or 3. See Figure 10.2 for the m = 100 case. We will hence
focus on the percentile.

For the most part, the 95th percentiles of the errors are under 10−4, with improvement as
m increases, and as we get further into the lower tail of the distribution. Figure 10.3 plots
the maximum of these percentiles for our values of m. For 25 6 m < 100, the maxima range
from 7.75× 10−5 to 1.65× 10−4; for 150 6 m < 1000, from 6.36× 10−5 to 8.67× 10−5; and from
1000 6 n 6 10000, from 4.01× 10−5 to 6.36× 10−5.

Figure 10.4 plots the percentiles for each x against F(x) = P̂[DMax 6 x], the lower-tail
probability (distribution function). The bulk of the values are between 10−4 and 10−5, with
the errors decreasing sharply for very small F(x). The next table summarizes these percentiles.
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Figure 10.4: The 95th percentile of the absolute error, versus the lower-tail probability.
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Figure 10.5: The 95th percentile of the relative error, versus the lower-tail probability.
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Absolute errors of the p̂
Range of F(x) Median percentile Maximum percentile

(0, 10−6] 8.92× 10−8 2.64× 10−7

(10−6, 10−5] 2.30× 10−7 7.66× 10−7

(10−5, 10−4] 7.02× 10−7 4.02× 10−6

(10−4, 10−3] 1.95× 10−6 7.49× 10−6

(10−3, 10−2] 5.77× 10−6 2.38× 10−5

(10−2, 10−1] 1.70× 10−5 8.59× 10−5

(10−1, 1] 3.85× 10−5 1.65× 10−4

(10.61)

Figure 10.5 looks at the relative errors, i.e., the posterior 95th percentiles of |p̂− p|/p̂. Now the
bulk are in the 0.001 to 0.01 range, but in the lower tail the relative errors become worse. Here
is the table:

Relative absolute errors of the p̂
Range of F(x) Median percentile Maximum percentile

(0, 10−6] 0.64194 2.51479
(10−6, 10−5] 0.24823 0.79992
(10−5, 10−4] 0.08920 0.38993
(10−4, 10−3] 0.03038 0.13229
(10−3, 10−2] 0.01021 0.04050
(10−2, 10−1] 0.00357 0.01589
(10−1, 1] 0.00157 0.01386

(10.62)

The next two tables make the same comparisons as above, but on the lower-tail probabili-
ties, the F̂(x)’s, which are typical p-values for testing uniformity of the rank vectors.

Absolute errors of the F̂
Range of F(x) Median percentile Maximum percentile

(0, 10−6] 1.19× 10−7 3.56× 10−7

(10−6, 10−5] 4.17× 10−7 1.02× 10−6

(10−5, 10−4] 1.29× 10−6 4.74× 10−6

(10−4, 10−3] 4.27× 10−6 1.18× 10−5

(10−3, 10−2] 1.36× 10−5 4.03× 10−5

(10−2, 10−1] 4.40× 10−5 1.44× 10−4

(10−1, 1] 9.66× 10−5 2.03× 10−4

(10.63)

Relative absolute errors of the F̂
Range of F(x) Median percentile Maximum percentile

(0, 10−6] 0.49359 1.93113
(10−6, 10−5] 0.12521 0.46193
(10−5, 10−4] 0.04087 0.12025
(10−4, 10−3] 0.01296 0.03773
(10−3, 10−2] 0.00418 0.01026
(10−2, 10−1] 0.00124 0.00344
(10−1, 1] 0.00022 0.00118

(10.64)
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10.6 The mixed moments of the Ca’s

For fixed m and k 6 bm/2c+ 1, we use an iterative approach to find an expression for the
distribution of the Ca’s in (10.28). Recall Ca is the number of the first k− 1 yj’s that are at
least a. Extend the definition to an arbitrary number of yj’s:

C
(i)
a = #{y1, . . . ,yi > a}, (10.65)

so that Ca = C
(k−1)
a . The joint distribution of C(1)

a ,C(2)
a , . . . ,C(k−1)

a conditional on Y ∈ Y1 (see
(10.18)) is a Markov chain:

C
(i)
a |C

(1)
a , . . . ,C(i−1)

a ,Y1 =D C
(i)
a |C

(i−1)
a ,Y1. (10.66)

That is, if one is at stage i− 1, for C(i)
a it matters only how many of the first j− 1 are greater

than or equal to a, not which ones. Next, note that if C(i−1) = c, then C(i)
a can either be c, if

yi < a, or c+ 1, if yi > a. By (10.18), yi ∈ {1, . . . ,m− k+ i}. At the ith stage, i− 1 possible
values have been removed, with c of them greater than or equal to a, hence

P[C
(i)
a = x |C

(i−1)
a = c,Y1] =


a−1−(i−1−c)
m−k+1 if x = c

m−k+i−(a−1)−c
m−k+1 if x = c+ 1

=


a−i+c
m−k+1 if x = c

1 − a−i+c
m−k+1 if x = c+ 1

. (10.67)

This expression can be used to find the distribution of Ca, but here we are concerned with
the mean. Now

E[C
(i)
a |C

(i−1)
a = c,Y1] = c

a− i+ c

m− k+ 1
+ (c− 1)

(
1 −

a− i+ c

m− k+ 1

)
= c

(
1 −

1
λ

)
+ 1 −

a− i

λ
, (10.68)

where again λ = m− k+ 1. Thus

µ
(i)
a ≡ E[C

(i)
a | Y1] = µ

(i−1)
a

(
1 −

1
λ

)
+ 1 −

a− i

λ
, (10.69)

and µ(1)a = P[Y1 > a | Y1] = 1 − (a− 1)/λ. We can obtain an expression for these means as a
sum, but instead use induction. The claim is that

µ
(j)
a = j− a+ 1 + (a− 1)

(
1 −

1
λ

)j
. (10.70)
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It checks for j = 1. If it is true for j = i− 1, then by (10.69),

µ
(i)
a =

(
i− a+ (a− 1)

(
1 −

1
λ

)i−1
)(

1 −
1
λ

)
+ 1 −

a− i

λ

= (i− a)

(
1 −

1
λ

)
+ 1 −

a− i

λ
+ (a− 1)

(
1 −

1
λ

)i
= i− a+ 1 + (a− 1)

(
1 −

1
λ

)i
, (10.71)

as desired. Setting i = k− 1 proves Lemma 10.4.
For the second moments, we fix 1 6 a < b 6 k− 1. We again use the Markov approach,

but with pairs (C
(i)
a ,C(i)

b ). Note that since a < b, C(i)
a > C(i)

b . If for 0 6 d 6 c 6 i− 1, C(i−1)
a = c

and C(i−1)
b = d, then

(C
(i)
a ,C(i)

b ) =


(c,d) if yi ∈ {1, . . . ,a− 1}
(c+ 1,d) if yi ∈ {a, . . . ,b− 1}
(c+ 1,d+ 1) if yi ∈ {b, . . . ,m− k+ i}

. (10.72)

At stage i, there are again m− k+ i values for y1 left to choose from, and

# left in {1, . . . ,a− 1} = a− 1 − (i− 1 − c) = a− i+ c,
# left in {a, . . . ,b− 1} = b− 1 − (a− 1) − (c− d) = b− a− c+ d, and

# left in {b, . . . ,m− k+ i} = m− k+ i− (b− 1) − d = m− k+ 1 + i− b− d. (10.73)

Thus

E[C
(i)
a C

(i)
b | (C

(i−1)
a ,C(i−1)

b ) = (c,d),Y1]

= cd
a− i+ c

λ
+ (c+ 1)d

b− a− c+ d

λ
+ (c+ 1)(d+ 1)

λ+ i− b− d

λ

= cd

(
1 −

2
λ

)
+ d

(
1 −

a− i+ 1
λ

)
+ (c+ 1)

(
1 −

b− i

λ

)
. (10.74)

We now have a recurrence relationship as in (10.69) but including the mixed moments
µ
(i)
ab = E[C

(i)
a C

(i)
b | Y1]:
µ
(i)
ab

µ
(i)
a

µ
(i)
b

 =


1 − 2

λ 1 − b−i
λ 1 − a−i+1

λ

0 1 − 1
λ 0

0 0 1 − 1
λ



µ
(i−1)
ab

µ
(i−1)
a

µ
(i−1)
b

+


1 − b−i

λ

1 − a−i
λ

1 − b−i
λ

 . (10.75)

We’ll use induction to show that

E[C
(i)
a C

(i)
b | Y1] = (i− a+ 1)(i− b+ 1)+

((a+ b− 2)i− (a− 1)(2b− 3))
(

1 −
1
λ

)i
+ (a− 1)(b− 2)

(
1 −

2
λ

)i
, (10.76)
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It works for i = 0. Inserting the expressions (10.76) and (10.71) with i− 1 into (10.75), we can
obtain µ(i)ab = A+B+C, where

A =

(
1 −

2
λ

)
(i− a)(i− b) +

(
1 −

b− i

λ

)
(i− a) +

(
1 −

a− i+ 1
λ

)
(i− b) +

(
1 −

b− i

λ

)
;

B =

(
1 −

1
λ

)i−1 [(
1 −

2
λ

)
((a+ b− 2)(i− 1) − (a− 1)(2b− 3))

+

(
1 −

b− i

λ

)
(a− 1) +

(
1 −

a− i+ 1
λ

)
(b− 1)

]
; and

C = (a− 1)(b− 2)
(

1 −
2
λ

)i
. (10.77)

Part C is indeed the last term in (10.76). Part A is

A = (i− a)(i− b) + (i− a) + (i− b) + 1

−
2(i− a)(i− b) + (b− i)(i− a) + (a− i+ 1)(i− b) + b− i

λ

= (i− a+ 1)(i− b+ 1) +
0
λ

, (10.78)

which is the first term in (10.76). Consider the term in the square brackets of B. Call it B∗, and
write it factoring out the i and λ, i.e.,

B∗ = −(a+ b− 2) − (a− 1)(2b− 3) + (a− 1) + (b− 1) + i(a+ b− 2)

+
2(a+ b− 2) + 2(a− 1)(2b− 3) − b(a− 1) − (a+ 1)(b− 1)

λ

+ i
−2(a+ b− 2) + a− 1 + b− 1

λ

= −(a− 1)(2b− 3) + i(a+ b− 2) +
(a− 1)(2b− 3) − i(a+ b− 2)

λ

= ((a+ b− 2)i− (a− 1)(2b− 3))
(

1 −
1
λ

)
. (10.79)

Maybe nonobvious:

2(a+ b− 2) − b(a− 1) − (a+ 1)(b− 1) = 2a+ 2b− 4 − ab+ b− ab+ a− b+ 1
= −2ab+ 3a+ 2b− 3 = −(a− 1)(2b− 3). (10.80)

Thus

B = ((a+ b− 2)i− (a− 1)(2b− 3))
(

1 −
1
λ

)i
, (10.81)

the middle term of (10.76), completing the induction.
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10.6.1 Third-degree mixed moments

The approach we take for higher moments is to guess the form, then use Mathematica® to
find the coefficients. Consider the qth mixed moment,

µ
(i)
a1,...,aq = E[C

(i)
a1 · · ·C

(i)
aq | Y1], where a1 < a2 < · · · < aq, (10.82)

where Y1 was defined in (10.16) and (10.18). The equation analog to (10.76) is arranged ac-
cording to the factors (1 − j/λ)i:

µ
(i)
a1...,aq = (i− a1 + 1)(i− a2 + 1) · · · (i− aq + 1)

+ (x
(1)
0 + x

(1)
1 i+ x

(1)
2 i2 + · · ·+ x(1)q−1i

q−1)(1 − 1/λ)i

+ (x
(2)
0 + x

(2)
1 i+ · · ·+ x(2)q−2i

q−2)(1 − 2/λ)i

+ · · ·+ (x
(q−1)
0 + x

(q−1)
1 i)(1 − (q− 1)/λ)i

+ (a1 − 1)(a2 − 2) · · · (aq − q)(1 − q/λ)i. (10.83)

That is, the form is

µ
(i)
a1,...,aq =

q∑
j=0

P
(q)
j (i ; a1, . . . ,aq)(1 − j/λ)i, (10.84)

where P(q)j (i ; a1, . . . ,aq) is a (q− j)th-degree polynomial in i, with coefficients depending on
just a1, . . ., aq, i.e., not on λ. We happen to know the first and last terms.

The steps for finding the x(j)l ’s are

1. Find the recurrence as in (10.75), where µ(i)a1,...,aq is a linear function of all the µ(i−1) for
all the subsets of {a1, . . . ,aq}.

2. Use the representations in (10.83) to obtain an expression for µ(i)a1,...,aq that collects terms
according to the (1 − j/λ)i−1’s.

3. Equate each the term multiplying the (1 − j/λ)’s in (10.83) to (1 − j/λ) times the terms
multiplying (1 − j/λ)i−1 from step 2. From these equations, we can solve for the x(j)l ’s.

4. Check that the resulting formula yields µ(0)a1,...,aq = 0. Then induction and step 1 will
verify the result.

We illustrate with q = 3, letting (a1,a2,a3) = (a,b, c), with a < b < c. To find the
recurrence, we first find the conditional distribution

(C
(i)
a ,C(i)

b ,C(i)
c ) | (C

(i−1)
a ,C(i−1)

b ,C(i−1)
c ) = (u, v,w),Y1. (10.85)
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(Recall the definition of C(i)
a in (10.65) and Y1 in (10.16) and (10.18).) Denote the conditional

probabilities as

P

(C(i)
a ,C(i)

b ,C(i)
c ) =


(u, v,w)
(u+ 1, v,w)
(u+ 1, v+ 1,w)
(u+ 1, v+ 1,w+ 1)

 | (C
(i−1)
a ,C(i−1)

b ,C(i−1)
c ) = (u, v,w),Y1


(10.86)

=


p0
p1
p2
p3

 = P

Yi ∈


{0, . . . ,a− 1}
{a, . . . ,b− 1}
{b, . . . , c− 1}
{c, . . . ,m− k+ i}

 | (C
(i−1)
a ,C(i−1)

b ,C(i−1)
c ) = (u, v,w),Y1

 .

(10.87)

The relevant conditional expectation is then

E[C
(i)
a C

(i)
b C

(i)
c | (C

(i−1)
a ,C(i−1)

b ,C(i−1)
c ) = (u, v,w),Y1]

= uvwp0 + (u+ 1)vwp1 + (u+ 1)(v+ 1)wp2 + (u+ 1)(v+ 1)(w+ 1)p3

= uvw+ vwQa + (uw+w)Qb + (uv+ u+ v+ 1)Qc,

where Qr = P[Y1 > r | (C(i−1)
a ,C(i−1)

b ,C(i−1)
c ) = (u, v,w),Y1]. (10.88)

To find Qa, note that by definition of Y1 in (10.18), Yi must be choosing from the values
{1, . . . ,m− k+ i}. Since we are at the ith stage, already i− 1 have been chosen, leaving λ ≡
m− k+ 1 to choose from. Initially there are m− k+ i− (a− 1) that are greater than or equal
to a, but since C(i−1) = u, u of them have been chosen, leaving m− k+ i− a+ 1 − u. Thus
Qa = (m− k+ i− a+ 1 − u)/λ. Similarly for the others, or taking from 1:

Qa = 1 −
a+ u− i

λ
, Qb = 1 −

b+ v− i

λ
, and Qc = 1 −

c+w− i

λ
. (10.89)

Inserting these formulas into (10.88) and collecting products of the u, v,w, we find the condi-
tional probability to be

uvw

(
1 −

3
λ

)
+ vw

(
1 −

a+ 2 − i

λ

)
+ (uw+w)

(
1 −

b+ 1 − i

λ

)
+ (uv+ u+ v+ 1)

(
1 −

c− i

λ

)
. (10.90)

To complete step 1, we take expectations in (10.88), obtaining the recurrence

µ
(i)
abc = µ

(i−1)
abc

(
1 −

3
λ

)
+ µ

(i−1)
bc

(
1 −

a+ 2 − i

λ

)
+ (µ

(i−1)
ac + µ

(i−1)
c )

(
1 −

b+ 1 − i

λ

)
+ (µ

(i−1)
ab + µ

(i−1)
a + µ

(i−1)
b + 1)

(
1 −

c− i

λ

)
. (10.91)
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For step 2, we insert the expressions (10.83) into (10.91) for the various µ’s, and collect
terms according to (1 − j/λ)i−1. To start, we find the coefficients for those quantities. For
j = 3, the coefficient is 0 for all but the “abc” means, whose coefficient is

(a− 1)(b− 2)(c− 3). (10.92)

The expression for sets of two is in (10.77), and for single values is in (10.71):

Constant
(
1 − 1

λ

)i−1 (
1 − 2

λ

)i−1

µ
(i−1)
abc (i− a)(i− b)(i− c) x0 + x1(i− 1) + x2(i− 1)2 y0 + y1(i− 1)
µ
(i−1)
ab (i− a)(i− b) −(a− 1)(2b− 3) + (a+ b− 2)(i− 1) (a− 1)(b− 2)
µ
(i−1)
ac (i− a)(i− c) −(a− 1)(2c− 3) + (a+ c− 2)(i− 1) (a− 1)(c− 2)
µ
(i−1)
bc (i− b)(i− c) −(b− 1)(2c− 3) + (b+ c− 2)(i− 1) (b− 1)(c− 2)
µ
(i−1)
a i− a (a− 1) 0
µ
(i−1)
b i− b (b− 1) 0
µ
(i−1)
c i− c (c− 1) 0
1 1 0 0

(10.93)

We then use the above to find the coefficients of the (1 − j/λ)i’s on both sides of (10.91).
Step 3 is then to equate the coefficients from the two sides. For the j = 3 it is easy, since the abc
terms both have the coefficient (a− 1)(b− 2)(c− 3), and the lower-order terms’ coefficients
are 0. For the constant term, we seem to have the answer already, but for completeness we
need to verify the value. The right-hand side’s constant is

(i− a)(i− b)(i− c)

(
1 −

3
λ

)
+ (i− b)(i− c)

(
1 −

a+ 2 − i

λ

)
+ ((i− a)(i− c) + i− c)

(
1 −

b+ 1 − i

λ

)
+ ((i− a)(i− b) + i− a+ i− b+ 1)

(
1 −

c− i

λ

)
.

(10.94)

Tediously writing things out, or, better, using Mathematica®, we find that the expression in
(10.94) reduces to (i− a+ 1)(i− b+ 1)(i− c+ 1), which is indeed the constant in (10.83).

Now consider the (1 − 2/λ)i−1 terms. The coefficient on the left-hand side of (10.91) is, by
(10.83),

(y0 + y1i)

(
1 −

2
λ

)
. (10.95)

On the right-hand side we have

(y0 + y1(i− 1))
(

1 −
3
λ

)
+ (b− 1)(c− 2)

(
1 −

a+ 2 − i

λ

)
+ (a− 1)(c− 2)

(
1 −

b+ 1 − i

λ

)
+ (a− 1)(b− 2)

(
1 −

c− i

λ

)
. (10.96)
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Subtract (10.95) from (10.96), then find the y0 and y1 that sets the difference to zero. The
coefficient of i in the difference is

1
λ
((b− 2)(c− 3) + a(b+ c− 4) − y1), (10.97)

which means that
y1 = (b− 2)(c− 3) + a(b+ c− 4). (10.98)

Now if we substitute that y1 into the difference and set to zero, we can solve for y0, which
turns out to be

y0 = −(a− 1)(12 − 5c+ b(3c− 7)). (10.99)

We do the same approach for (1 − 1/λ). The coefficient on the left-hand side of (10.91) is

(x0 + x1i+ x2i
2)

(
1 −

1
λ

)
. (10.100)

The right-hand side’s is

(x0 + x1(i− 1) + x2(i− 1)2)

(
1 −

3
λ

)
+ (−(b− 1)(2c− 3) + (b+ c− 2)(i− 1))

(
1 −

a+ 2 − i

λ

)
+ (−(a− 1)(2c− 3) + (a+ c− 2)(i− 1) + c− 1)

(
1 −

b+ 1 − i

λ

)
+ (−(a− 1)(2b− 3) + (a+ b− 2)(i− 1) + a− 1 + b− 1)

(
1 −

c− i

λ

)
. (10.101)

Equating (10.100) and (10.102), and solving for the xj’s, we find

x0 = (a− 1)(7 − 4c+ b(3c− 5)),
x1 = 4c− 9 − 2a(b+ c− 3) − b(2c− 5),
x2 = a+ b+ c− 3. (10.102)

Thus with the yj’s and xj’s in (10.98), (10.99), and (10.102), we have

µ
(i)
abc = (i− a+ 1)(i− b+ 1)(i− c+ 1) + (x0 + x1i+ x2i

2)

(
1 −

1
λ

)i
+ (y0 + y1i)

(
1 −

2
λ

)i
+ (a− 1)(b− 2)(c− 3)

(
1 −

3
λ

)i
. (10.103)

Step 4 is to verify that setting i = 0 in (10.103) yields zero, which it does, proving the
equation.

10.6.2 General q

Consider finding the x(j)l ’s in (10.83) for arbitrary q, assuming we have the results (10.82) for
values less than q. We condition on

C(i−1) ≡ (C
(i−1)
a1 , . . . ,C(i−1)

aq ) = (u1, . . . ,uq) ≡ u, (10.104)
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so that

C(i) |C(i−1) = u ∈ {(u1, . . . ,uq), (u1 + 1,u2, . . . ,uq),
(u1 + 1,u2 + 1,u3, . . . ,uq), . . . , (u1 + 1,u2 + 1, · · · ,uq + 1)}. (10.105)

Let

pj = P
[
C(i) = (u1 + 1, . . . ,uj + 1,uj+1, . . . ,uq) |C(i−1) = u,Y1

]
, j = 0, . . . ,q. (10.106)

After multiplying out the (uj + 1) terms, the conditional expectation can be written as a sum
of all possible products of the elements {1,u1, . . . ,uq}, times a sum of some of the ph’s:

E[C(i) |C(i−1) = u,Y1] =

q∑
j=0

∑
16l1<···<lj6q

ul1ul2 · · ·uljQr, r = r({l1, . . . , lj}). (10.107)

Here
Qr = pr + · · ·+ pq, (10.108)

and the function r is the largest integer (0 6 r 6 q) not in the subset {l1, . . . , lj}:

r(I) = max{r ∈ {0, . . . ,q} | r 6∈ I} for I ⊂ {1, . . . ,q}. (10.109)

For example, if q = 5, then we have the following:

{l1, . . . , lj} r

{1, 2, 3, 4, 5} 0
{1, 2, 4, 5} 3
{3, 4, 5} 2
{4, 5} 3
{1, 3} 5
∅ 5

(10.110)

Now

Qr = P[Yi > ar |C
(i−1) = u] =

m− k+ i− (ar − 1) − ur
m− k+ i− (i− 1)

= 1 −
ar + ur − i

λ
, λ = m− k+ 1.

(10.111)
By Y1 in (10.18), Yi 6 m− k+ i, and after the (i− 1)st stage, there have been i− 1 removed,
hence there are m− k+ 1 left to choose from. There are m− k+ i− (ar − 1) values at least ar
for the numerator, but since C(i−1)

ar = ur, there have been ur already taken. Thus we obtain
(10.111).

Place the Qr’s into (10.107). Since the ul’s appear in the Qr’s, we have to rework the
formula so that the products of ul’s are all together. Studying (10.91), it appears that the
pattern is

E[C(i) |C(i−1) = u,Y1] = u1 · · ·uq
(

1 −
q

λ

)
+

q−1∑
j=0

∑
16l1<···<lj6q

ul1 · · ·ulj

(
1 −

ar + q− r− i

λ

)
,

(10.112)
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for r = r({l1, . . . , lj}) in (10.109).
Now taking expectations in (10.112), we have

µ
(i)
a1,...,aq = µ

(i−1)
a1,...,aq

(
1 −

q

λ

)
+

q−1∑
j=0

∑
16l1<···<lj6q

µ
(i−1)
al1 ,...,alj

(
1 −

ar + q− r− i

λ

)
. (10.113)

To find the formulas in (10.83), we have to pick out the coefficients of each (1 − j/λ)(i−1)

(j = 1, . . . ,q− 1) for each µ(i−1), multiply by the appropriate (1 − (ar + q− r− i)/λ), and sum
them. That is, using the polynomials P(q)j in (10.84), we have for each j,

P
(q)
j (i ; a1, · · · ,aq)(1 − j/λ) = P

(q)
j (i− 1 ; a1, · · · ,aq)(1 − q/λ)

+

q−1∑
h=j

∑
16l1<···<lh6q

P
(j)
h (i− 1 ; al1 , . . . ,alh)

(
1 −

ar + q− r− i

λ

)
. (10.114)

Both sides of (10.114) are polynomials in i of degree q− j (since the P(j)h ’s in the summation
are of degree h− j, h < q). Given we know the P(j)h for j < q, the only unknowns in (10.114)
are the coefficients for P(q)j . Thus we can solve for them, obtaining P(q)j .

10.6.3 Central moments

Taking i = k− 1, the moments we have found are the raw mixed moments,

µa1,...,aq = E[Ca1 · · ·Caq | Y1], (10.115)

but in order to find the sl’s in (10.36), we need the central mixed moments. E.g., for q = 2,
a < b, from (10.38) we obtain

Cov[Ca,Cb | Y1] = E[WaWb | Y1]

= (a− 1)

((
1 −

1
λ

)k−1

+ (b− 2)
(

1 −
2
λ

)k−1

− (b− 1)
(

1 −
1
λ

)2k−2
)

.

(10.116)

In general they can be found from the raw moments using

E[Wa1 · · ·Waq | Y1] = E[(Ca1 − µa1) · · · (Caq − µaq) | Y1]

=

q∑
j=0

(−1)q−j
∑

16l1<···<lj6q

µal1 ,...,alj

∏
i/∈{l1,...,lj}

µai


=

q∑
j=2

(−1)q−j
∑

16l1<···<lj6q

µal1 ,...,alj

∏
i/∈{l1,...,lj}

µai

+ (−1)q−1(q− 1)
q∏
i=1

µai

(10.117)
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10.7 Asymptotics
In this section we find the asymptotic distribution of DMax as in (10.3). It turns out not to be
a great approximation for even fairly large m, so we recommend the approximation given at
the end of Section 10.4, although the first-order approximation from (10.33) is almost as easy
to apply. The main result for this section is next.

Proposition 10.5. For DMax = dMax(Y ,ω), where Y ∼ Uniform(Pm), as m→∞,

P

[
m−DMax√

m
6 x

]
−→ 1 − e−x

2
, x > 0. (10.118)

Proof. Fix x > 0, and let k ≡ km be a sequence of positive integers such that k/
√
m→ x. Now

for large enough m, k < bm2 c+ 1, hence we obtain from Proposition 10.3, i.e., (10.29),

P

[
m−DMax√

m
>

k√
m

]
= P[DMax 6 m− k]

=
E[
∏k
a=2(m− k+ 1 −Ca) | Y1]× (m− k+ 1)k−1

(m)2k−2
. (10.119)

Recall from (10.24) that Ca is the number of Y1, . . . ,Yk−1 that are greater than or equal to a, so
that for 2 6 a 6 k, Ck 6 Ca 6 k− 1. Letting Vk = k− 1 −Ck, we have

(m− 2k+ 2)k−1 6 E

[
k∏
a=2

(m− k+ 1 −Ca) | Y1

]
6 E[(m− k+ 1 −Ck)

k−1 | Y1]

= E[(m− 2k+ 2 + Vk)
k−1 | Y1]

= (m− 2k+ 2)k−1E

[(
1 +

Vk
m− 2k+ 2

)k−1

| Y1

]
. (10.120)

Hence by (10.119) and (10.120), we have the bounds

Pk,mQk,m 6 P[DMax 6 m− k] 6 Pk,mQk,mRk,m, (10.121)

where, since (m)2k−2 = (m)k−1(m− k+ 1)k−1,

Pk,m =
(m− 2k+ 2)k−1

(m− k+ 1)k−1
, Qk,m =

(m− k+ 1)k−1

(m)k−1
, (10.122)

and

Rk,m = E

[(
1 +

Vk
m− 2k+ 2

)k−1

| Y1

]
. (10.123)

Below we show that as m→∞,

Pk,m −→ e−
1
2x

2
, Qk,m −→ e−

1
2x

2
, and Rk,m −→ 1. (10.124)

Thus by (10.121), P[DMax 6 m− k]→ exp(−x2), proving (10.118).
For the first two components, use the following lemma, proven after this proof.
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Lemma 10.6. Suppose l/
√
n→ x as n→∞. Then

(n− l)l

(n)l
−→ e−

1
2x

2
. (10.125)

Proof. Now apply the lemma to Pk,m and Qk,m in (10.122), with (n, l) = (m− k+ 1,k− 1) and
(n, l) = (m,k− 1), respectively. Since k/

√
m→ x, in both cases, l/

√
n→ x. Thus the first two

results in (10.124) hold.
Turn to Rk,m in (10.123). We will show that for any ε > 0, there exists a finite T such that

P[Vk > T | Y1] 6 ε for sufficiently large m. (10.126)

(That is, the sequence Vk is bounded in probability.) Fix such an ε, and find the T as in
(10.126). Then since Vk 6 k− 1,

Rk,m = E

[(
1 +

Vk
m− 2k+ 2

)k−1

I[Vk < T ] | Y1

]
+ E

[(
1 +

Vk
m− 2k+ 2

)k−1

I[Vk > T ] | Y1

]

6

(
1 +

T

m− 2k+ 2

)k−1

+

(
1 +

k− 1
m− 2k+ 2

)k−1

ε (10.127)

for large m. Let m → ∞, with k/
√
m → x. The first term in the last line of (10.127) goes

to 1, since T is fixed and (k− 1)/(m− 2k+ 2) → 0, and the second goes to exp(x2)ε since
(k− 1)2/(m− 2k+ 2)→ x2. Thus

lim sup
m→∞ Rk,m 6 1 + ex

2
ε. (10.128)

Since ε is arbitrary, and Rk,m > 1, we have completed (10.124).
All that is left is showing (10.126). Since Vk > 0, we can use Markov’s inequality, P[Vk >

T | Y1] 6 E[Vk | Y1]/T . Then by Lemma 10.4 with a = k in (10.37), recalling Vk = k− 1 −Ck, we
have

P[Vk > T | Y1] 6
1
T
(k− 1)

(
1 −

(
1 −

1
m− k+ 1

)k−1
)

. (10.129)

Use the expansion (1 − z)l = 1 − lz+ (l(l− 1)z2/2)(1 − z∗)l−2, |z∗| 6 |z|. With l = k− 1 and
z = 1/(m− k+ 1), (10.129) yields

lim sup
m→∞ P[Vk > T | Y1] 6

1
T

lim sup
m→∞

(
(k− 1)2

m− k+ 1
−

(k− 1)2(k− 2)
2(m− k+ 1)2 (1 − z∗)k−3

)
=
x2

T
. (10.130)

Then for given ε > 0 in (10.126), we can take T = (x2 + 1)/ε.

Proof of Lemma 10.6. Recall Stirling’s approximation,

n! = s(n)
(

1 +O

(
1
n

))
, where s(n) =

√
2πnn+

1
2e−n. (10.131)
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Then
(n− l)l

(n)l
=

(n− l)l(n− l)!
n!

= t(n)

(
1 +O

(
1
n

))
, (10.132)

where

t(n) =
(n− l)l(n− l)n−l+

1
2e−(n−l)

nn+
1
2e−n

=

(
1 −

l

n

)n
el
√

1 −
l

n
. (10.133)

As n → ∞, the term in the square root goes to 1. Consider the log of the rest, and use the
Taylor expansion log(1 − z) = −(z+ z2/2 + (z∗)3/3), |z∗| 6 |z|:

n log
(

1 −
l

n

)
+ l = −n

(
l

n
+

1
2
l2

n2 +
1
3
(z∗)3

)
+ l

= −
1
2
l2

n
+
n

3
(z∗)3, |n(z∗)3| 6

l3

n2 . (10.134)

Since l/
√
n → x by assumption, the final equality in (10.134) goes to −x2/2, proving (10.125).
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Covariances of some of the distances

In Section 1.6 we summarized results about the correlations among the distances. This chapter
provides the details. Section 11.1 finds the exact covariances among five of the distances.
Section 11.2 presents some simulations for the covariances we could not deal with analytically.

11.1 Exact covariances of five of the distances
In this section we find the exact covariances of the Spearman, footrule, Kendall, Hamming,
and Cayley distances. Ulam and Maximum have proven very difficult to deal with analytically.
David, Kendall, & Stuart (1951) find the first-order (in 1/m) correlation between Spearman’s
ρ and Kendall’s distance assuming normal samples with correlation r. We are restricting
to Y ∼ Uniform(Pm), which is equivalent to their setting r = 0. Table (11.1) contains the
covariances.

Footrule Kendall Hamming Cayley

Spearman m(m+ 1)(m2 + 1)/30 m(m− 1)(m+ 1)2/36 m(m+ 1)/6 (m2 − 1)/6
Footrule (m+ 1)(m2 + 1)/30 (m+ 1)/3 (m2 − 1)/3m
Kendall (m+ 1)/6 (2m− 1)/12
Hamming 1 − 1/m

(11.1)
All but the Kendall/Cayley covariance can be handled by at least one of the following

formulas, where DA is a Hoeffding distance (Chapter 3) with δA(i, j) and ∆A as in (3.1) and
(3.4):

Cov[DA,Dρ] = −
2

m− 1
ωH∆AHω

′, (11.2a)

Cov[DA,DKendall] =
1
m
Cov[DA,Dρ], (11.2b)

Cov[DA,DHamming] =
1

m− 1
E[DA], and (11.2c)

Cov[DA,DCayley] =
1
m
E[DA]. (11.2d)

129
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Here, H is the m×m centering matrix from (3.8). The proofs are given in Section 11.3.
Start with the covariance between the Spearman and footrule distances. By (5.5), we have

H∆FootruleH = −2HKK ′H , (11.3)

where K is the m×m matrix with ones on and above the diagonal, and zeros below, as in
(5.3). Thus (11.2a) shows that

Cov[DFoot,DSpear] =
4

m− 1
‖ωHK‖2. (11.4)

Now ωH = ω − (m+ 1)1/2, hence, with help from (5.7),

(ωHK)i =

i∑
j=1

(
j−

m+ 1
2

)
=
i(i−m)

2

⇒ ‖ωHK‖2 =

m∑
i=1

(
i(i−m)

2

)2

=
1

120
m(m2 − 1)(m2 + 1). (11.5)

Thus (11.4) proves the Spearman/footrule entry in (11.1).
For convenience, we repeat the relevant means and covariances from (1.10):

Mean Variance (if m > 1)

Spearman m(m2 − 1)/6 m2(m− 1)(m+ 1)2/36
Footrule (m2 − 1)/3 (m+ 1)(2m2 + 7)/45
Kendall m(m− 1)/4 m(m− 1)(2m+ 5)/72
Hamming m− 1 1
Cayley m−

∑m
i=1 1/i

∑m
i=1(i− 1)/i2

(11.6)

The covariance of Spearman or footrule with Hamming or Cayley, and Hamming with Cayley,
can all be found using (11.2c), (11.2d), and the means from (11.6). The covariance of Kendall’s
distance with the Spearman, footrule, or Hamming distances is then found using (11.2b) and
the previously found covariances (or variance, in the first case) with Spearman.

Finally, consider the Kendall/Cayley covariance. Using the expression for Kendall’s dis-
tance in (6.4), we have

Cov[DKen,DCay] =
∑∑
16j<i6m

Cov[I[Yi < Yj],DCay]. (11.7)

Recall the decomposition of Cayley’s distance from Section 9.1, where Vk was the indicator of
whether an interchange was needed to set yk = k, proceeding in the order k = 1, 2, . . . ,m− 1.
We could just as well take any other order. For fixed i, j, j < i, consider any order that starts
with k = j, i, so that V1 is the indicator of whether at the first step we need an interchange to
have yj = j, and V2 is the indicator at the second step of whether an interchange is needed to
have yi = i. After these two steps, the further steps (V3, . . . ,Vm−1) are independent of V1 and
V2, and independent of Yi and Yj since after the first two interchanges, the remaining elements
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of Y are equally likely to be in any order. Also, as in (9.9), Vk ∼ Bernoulli(1 − 1/(m− k+ 1))
for each k. The independence yields

Cov[I[Yi < Yj],DCay] = Cov[I[Yi < Yj],
m∑
k=1

Vk] = Cov[I[Yi < Yj],V1 + V2]. (11.8)

Now V1 = I[Yj 6=j], and V2 equals one if Yi 6= i unless the first interchange places an i into the
ith slot, that is, unless Yi=j and Yj=i. Thus

V1 + V2 = I[Yj 6= j] + I[Yi 6= i] − I[Yi = j & Yj = i]

= 2 − I[Yj = j] − I[Yi = i] − I[Yi = j & Yj = i]. (11.9)

To find the covariance in (11.8), since E[I[Yi < Yj]] = 1/2 we have the cross-product

E[I[Yi < Yj](V1 + V2)] = 1 − P[Yi < Yj |Yi = i]P[Yi = i] − P[Yi < Yj |Yj = j]P[Yj = j]

− P[Yi = j & Yj = i]

= 1 −
m− i

m(m− 1)
−

j− 1
m(m− 1)

−
1

m(m− 1)
. (11.10)

For the final term, note that since j<i, Yi=j and Yj=i implies that Yi<Yj. Now E[V1 + V2] =
2 − 1/m− 1/(m− 1), which yields

Cov[I[Yi < Yj],V1 + V2] =
i− j− 1

2
m(m− 1)

. (11.11)

Using the expression in (11.7), the overall covariance simplifies to

Cov[DKen,DCay] =

m−1∑
j=1

m∑
i=j+1

i− j− 1
2

m(m− 1)

=
1

m(m− 1)

m−1∑
j=1

m−j∑
k=1

(k−
1
2
)

=
1

2m(m− 1)

m−1∑
j=1

(m− j)2

=
2m− 1

12
. (11.12)

This equation completes the matrix in (11.1).

11.2 Simulations for Ulam and maximum vs. the others
We simulated 10,000 random vector Y ’s of various lengths m to estimate the correlations of
the Ulam and maximum distances versus the other five, and each other. Figure 11.1 graphs
the correlations for a number of values of m from 10 to 10,000 for the correlations with Ulam’s
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Figure 11.1: The correlation of Ulam’s distance with the other distances as a function of
log10(m), for m from 10 to 10000.

distance, and Figure 11.2 has similar graphs for the correlations with the maximum distance.
We used log10(m) for the horizontal axis. Table (11.13) extracts these estimated correlations
for a few values of m.

For the Ulam distance, we see that as m increases, the correlations decline. The correla-
tions with the Spearman, footrule, and Kendall distances are much higher than those with
Hamming, Cayley, and the maximum distance. The latter do appear to be close to zero, while
the former seem to be declining fairly linearly with the log of m. For the maximum distance,
all the correlations are approaching very close to zero.
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Figure 11.2: The correlation of the maximum distance with the other distancesas a function of
log10(m), for m from 10 to 10,000. The Spearman and Kendall distances’ curves are almost on
top of each other.

Spearman Footrule Kendall Hamming Cayley Maximum

m = 10
Ulam 0.6317 0.6593 0.7130 0.3126 0.1916 0.3336
Maximum 0.7025 0.5530 0.6871 0.1443 0.1644

m = 100
Ulam 0.4797 0.5405 0.499 0.1030 0.0478 0.0670
Maximum 0.2630 0.1595 0.2617 −0.0046 −0.0058

m = 1, 000
Ulam 0.3363 0.4161 0.3388 0.0301 0.0165 0.0236
Maximum 0.0831 0.0449 0.0833 −0.0046 0.0075

m = 10, 000
Ulam 0.2295 0.3036 0.2299 −0.0030 0.0006 0.0064
Maximum 0.0278 0.0173 0.0278 −0.0018 0.0063

(11.13)

We end this section with some thoughts about possible reasons why most of the correla-
tions with Ulam and the maximum distances approach zero. Formal mathematical analysis
so far has proven elusive.

Consider any bi-invariant distance. Its distribution depends on a given yi only based on
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whether yi = i or not. On the other hand, the Ulam and maximum distances are sensitive to
the distance yi is from i, thus would tend to have little relationship to the bi-invariant one.

Think about DMax. From the asymptotic distribution in (10.3), we see that for a moderate
value of the constant c, say c = 10, P[DMax>m− c

√
m] ≈ 1. Now

DMax > m− c
√
m =⇒ DMax = max{|Yi − i| | i ∈ Oc,m}, (11.14)

where
Oc,m = {i | 1 6 i 6 c

√
m or m− c

√
m 6 i 6 m}, (11.15)

since if i 6∈ Oc,m, then |yi− i| < m− c
√
m. Thus for large m, DMax depends almost exclusively

on only 2c
√
m of the yi’s. For Spearman, footrule, and Kendall, and possibly for Ulam,

the asymptotics are not substantially affected by ignoring those indices, which suggests an
asymptotically low correlation with DMax

11.3 Proofs

We first deal with cases where both distances are Hoeffding distances.

Lemma 11.1. Suppose DA and DB are Hoeffding distances (Chapter 3), with matrices ∆A and ∆B as
in (3.4), respectively. Then

Cov[DA,DB] =
1

m− 1
trace

(
H∆ ′AH∆B

)
, (11.16)

where H is the m×m centering matrix from (3.8).

Proof. Similar to (3.19) through (3.21), with W = Q(∆A ∆B),

Cov[W ] =
1

m− 1
Hm ⊗

(
∆ ′A
∆ ′B

)
Hm(∆A ∆B) ≡ Σ ⊗Ω, (11.17)

where here Ω is (2m)×(2m). Now

Cov[Da,DB] = Cov[trace(Q∆A), trace(Q∆B)]

= trace

 m∑
i=1

m∑
j=1

Cov[Wii,Wj,j+m]


=

m∑
i=1

m∑
j=1

σijωi,j+m

=
1

m− 1
trace

(
H∆ ′AH∆B

)
. (11.18)
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First, let DB = Dρ. From (4.1), we have

H∆ρH = −2Hω ′ωH . (11.19)

Thus

Cov[DA,Dρ] =
1

m− 1
trace(H∆AH∆ρ)

= −
2

m− 1
trace(∆AHω

′ωH)

= −
2

m− 1
ωH∆AHω

′, (11.20)

as in (11.2a).
Now take DB = DHam, for which ∆Ham = 1 ′1− I , where I is the m×m identity matrix,

and 1 is the 1×m vector of 1’s. Then H∆HamH = −H , so that

Cov[DA,DHam] = −
1

m− 1
trace(H∆A) =

1
m− 1

E[DA] (11.21)

by (3.17), which is (11.2c)
The next result deals with one Hoeffding distance.

Lemma 11.2. Suppose DA = dA(Y ,ω) is a Hoeffding distance with DA =
∑
δA(Yi, i) as in (3.1),

and D is any other distance. Then

Cov[DA,D] =

m∑
k=1

Cov[δA(Yk,k),E[D |Yk]]. (11.22)

Furthermore, if D is bi-invariant,

Cov[DA,D] =
1

m− 1
E[DA](E[D] − E[D |Yk = k]). (11.23)

Proof. First,

Cov[DA,D] =

m∑
k=1

Cov[δA(Yk,k),D]. (11.24)

For each summand, we use the conditional/unconditional formula for covariances,

Cov[δA(Yk,k),D] = E[Cov[δA(Yk,k),D |Yk]] +Cov[E[δA(Yk,k) |Yk],E[D |Yk]]. (11.25)

The conditional covariance in the first term on the right-hand side is zero since conditionally
δA(Yk,k) is a constant. For the other term, E[δA(Yk,k) |Yk] = δA(Yk,k), hence we have (11.22).

It can be shown that for any bi-invariant distance D, the conditional distribution D |Yk = l
depends only on whether l = k. Then for some a and b,

E[D |Yk = k] = a and E[D |Yk = l] = b for any k, l with k 6= l. (11.26)
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Furthermore, the unconditional expectation can be written

E[D] = E[D |Yk = k]P[Yk = k] + E[D |Yk 6= k]P[Yk 6= k] = a
1
m

+ b
m− 1
m

=⇒ b =
mE[D] − a

m− 1
. (11.27)

Then we can write
E[D |Yk] = (a− b) I[Yk = k] + b. (11.28)

Each summand in (11.22) here is

Cov[δA(Yk,k),E[D |Yk]] = (a− b)Cov[δA(Yk,k), I[Yk = k]]
= (a− b) (E[δA(Yk,k) I[Yk = k]] − E[δA(Yk,k)]E[I[Yk = k]])

=
b− a

m
E[δA(Yk,k)], (11.29)

since δA(Yk,k) = 0 if Yk = k. Then by (11.22), Cov[DA,D] is found by summing (11.29) over k,
which yields (b− a)E[DA]/m, and (11.23) follows by writing b− a as a function of E[D] and
E[D |Yk = k].

Consider the covariance of Kendall’s distance with a Hoeffding distance, so that D = DKen
in (11.22). Now

E[DKen |Yk = l] =
∑∑
16i<j6m

P[Yi > Yj |Yk = l]

=

k−1∑
i=1

P[Yi > l |Yk = l] +

m∑
j=k+1

P[l > Yj |Yk = l] +
∑∑

16i<j6m,i,j 6=k
P[Yi > Yj]

= (k− 1)
m− l

m− 1
+ (m− k)

l− 1
m− 1

+
(m− 1)(m− 2)

2
1
2

= −
2

m− 1

(
k−

m+ 1
2

)
l+Ck,m, (11.30)

where Ck,m is a constant independent of l. The parallel calculation for Spearman’s distance is

E[DSpear |Yk = l] =

m∑
i=1

E[Y2
i |Yk = l] +

m∑
i=1

i2 − 2
m∑
i=1

i E[Yi |Yk = l]

=
m(m+ 1)(2m+ 1)

3
− 2

kE[Yk |Yk = l] +∑
i 6=k

i E[Yi |Yk = l]

 . (11.31)

Note that

E[Yi |Yk = l] =

{
l if i = k

1
m−1

(
m(m+1)

2 − l
)

if i 6= k
, (11.32)
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since if i 6= k, Yi is conditionally equally likely to be anything but l. Thus

E[DSpear |Yk = l] = −2
(
kl+

1
m− 1

(
m(m+ 1)

2
− k

)(
m(m+ 1)

2
− l

))
+C∗m

= −
2m
m− 1

(
k−

m+ 1
2

)
l+C∗∗k,m. (11.33)

In (11.22), for Spearman’s or Kendall’s distance, we can ignore the constants, so that by
setting l = Yk in (11.30) and (11.33),

Cov[DA,DKen] = −
2

m− 1

m∑
k=1

(
k−

m+ 1
2

)
Cov[δA(Yk,k), Yk], and

Cov[DA,DSpear] = −
2m
m− 1

m∑
k=1

(
k−

m+ 1
2

)
Cov[δA(Yk,k), Yk]. (11.34)

They differ only by a factor of m, which gives us (11.2b)
Turn to Cayley’s distance, which is bi-invariant (see Section 1.7). Given Ym = m, the

conditional distribution of (Y1, . . . ,Ym−1) is Uniform(Pm−1). Thus the conditional distribution
of Cayley’s distance given Ym = m is the same as the unconditional distribution when there
are just m− 1 objects to rank. From (1.10) for the mean, then, we have

E[DCay] = m−

m∑
i=1

1
i

and E[DCay |Yk = k] = m− 1 −

m−1∑
i=1

1
i

, (11.35)

since by bi-invariance, conditioning on Yk = k is the same for any k. Thus (11.23) gives us

Cov[DA,DCay] =
1

m− 1
E[DA](E[DCay] − E[DCay |Yk = k])

=
1

m− 1
(1 −

1
m

)E[DA] =
1
m
E[DA]. (11.36)

Thus we have (11.2d).
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Tied Rankings

Often, rank data is incomplete, either by design or by random ties or judges leaving out infor-
mation. For example, people might rank only the top three of five choices, or an experiment
might be conducted where each judge is given only a subset of the objects to rank. In non-
parametrics, even nominally continuous variables will often have ties (from round-off error or
inherent discreteness, such as age in years).

There are a couple of general approaches to extending distances on full rankings to those
on partial rankings. Both are based on the notion of compatibility sets, as in Alvo & Cabilio
(1991) and Critchlow (1985), and earlier in M. G. Kendall & Gibbons (1990) (a recent update
to M. Kendall (1948)) for Spearman’s ρ. The idea is that for any incomplete ranking, there
is a well-defined set of complete rankings that is compatible with it. For example, suppose
m = 5, and a ranking with ties ranks object 1 first, has objects 2 and 3 tied in second place,
and objects 4 and 5 tied in last place. We will represent this tied ranking as x = (1, 2, 2, 3, 3).
Then the complete rankings which are compatible with x are those with object 1 first, objects
2 and 3 next in either order, and objects 4 and 5 taking the last two slots, in either order. If
the tied ranking is x = (1, 2, 3, 3, 3), then the compatible complete rankings are all those with
objects 1 and 2 ranked 1 and 2, respectively. That is,

Tied ranking Compatible complete rankings

(1, 2, 2, 3, 3) (1, 2, 3, 4, 5), (1, 2, 3, 5, 4), (1, 3, 2, 4, 5), (1, 3, 2, 5, 4).

(1, 2, 3, 3, 3) (1, 2, 3, 4, 5), (1, 2, 3, 5, 4), (1, 2, 4, 3, 5), (1, 2, 4, 5, 3),
(1, 2, 5, 3, 4), (1, 2, 5, 4, 3).

(12.1)

If only the first three objects are ranked, and they are ranked 1, 2, and 3, then the compat-
ible complete rankings are those with the first three ranked in that order, but not necessarily
ranked 1, 2, 3:

Incomplete ranking Compatible complete rankings

(1, 2, 3, ∗, ∗) (1, 2, 3, 4, 5), (1, 2, 3, 5, 4), (1, 2, 4, 3, 5), (1, 2, 4, 5, 3),
(1, 2, 5, 3, 4), (1, 2, 5, 4, 3), (1, 3, 4, 2, 5), (1, 3, 4, 5, 2),
(1, 3, 5, 2, 4), (1, 3, 5, 4, 2), (1, 4, 5, 2, 3), (1, 4, 5, 3, 2),
(2, 3, 4, 1, 5), (2, 3, 4, 5, 1) (2, 3, 5, 1, 4), (2, 3, 5, 4, 1),
(2, 4, 5, 1, 3), (2, 4, 5, 3, 1), (3, 4, 5, 1, 2), (3, 4, 5, 2, 1).

(12.2)

139
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Other schemes can be imagined. For example, suppose with m = 4 objects, a judge prefers
object 1 to object 2, and object 3 to object 4. Then the compatible complete rankings would be
(1,2,3,4), (1,3,2,4), (1,4,2,3), (2,3,1,4), (2,4,1,3), and (3,4,1,2).

Suppose we have two incomplete rankings, represented by their compatibility subsets
W,Z ⊂ Pm. We wish to define a distance between the two subsets based on the interpoint
distances d(x,y) for x,y ∈ Pm. The two main approaches in the literature are the use of Haus-
dorff distances proposed by Critchlow (1985), and the averaging of Alvo & Cabilio (1991). The
former looks at the Hausdorff distance between W and Z induced by d:

dH(W,Z) = max{max
x∈W

dm(x,Z), max
y∈Z

dm(W,y)}, (12.3)

where
dm(x,Z) = min

y∈Z
d(x,y) and dm(W,y) = min

x∈W
d(x,y). (12.4)

There are various ways to interpret Hausdorff distance. E.g., dH(W,Z) is the smallest K such
that for each x ∈ W, there exists a y ∈ Z such that d(x,y) 6 K, and for each y ∈ Z, there
exists an x ∈W such that d(x,y) 6 K.

The averaging approach just averages the distances d(x,y) for x ∈W and y ∈ Z:

dA(W,Z) =

∑
x∈W
∑
y∈Z d(x,y)

#W× #Z
, (12.5)

The idea here is the same as for hierarchical agglomerative clustering using average linkage.
As in clustering, we could also use the maximum of the interpoint distances (complete linkage)
or minimum of them (single linkage) in place of the average:

dM(W,Z) = max
x∈W,y∈Z

d(x,y);

dm(W,Z) = min
x∈W,y∈Z

d(x,y). (12.6)

If the scientific context leading to the ties rankings dictates which method to use, then
certainly that is the one to use. For general purposes, the minimum and maximum seem too
extreme, while either the averaging or Hausodrff approach has its advantages. The Hausdorff
distance is an actual metric on the subsets of Pm (if d is metric on Pm), whereas the average
distance is typically not, i.e., it is likely that dA(W,W) > 0, and there is no guarantee that
the triangle inequality holds. Any Hausdorff distance will take values in the support of
d(x,y). It is also easier than averaging to calculate for Ulam’s and the maximum distances.
The averaging approach is the usual one, especially for Hoeffding and Kendall distances. In
particular, for Spearman’s distance, it leads naturally to the popular midrank statistic for tied
ranks.

For situations with not too many ties, the two approaches yield similar results. There
can be interesting differences in other cases. For an extreme example, suppose m = 10 and
w = (1, 1, 1, 1, 1, 2, 2, 2, 2, 2). We consider three z’s that conform maximally to w but with
increasing numbers of ties. Because of the ties (in one or both vectors), we might be reluctant
to declare their distances from w to be zero. We will look at Spearman’s ρ as in (1.14),
but with the distance extended to ties in the numerator. E.g., for the averaging approach,
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ρA(w, z) = 1 − dA
Spear(w, z)/E[dSpear(Z,ν)], where in the denominator the Z and ν are in Pm.

Then for the four approaches we have

z Averaging Hausdorff Minimum Maximum

(1, 2, 3, 4, 5, 6, 7, 8, 9, 10) 0.7576 0.5152 1 0.5152
(1, 1, 1, 2, 2, 3, 3, 3, 4, 4) 0.7576 0.6364 1 0.5152
(1, 1, 1, 1, 1, 2, 2, 2, 2, 2) 0.7576 1 1 0.5152

(12.7)

(Note that the minimum distance yields the maximum ρ, and vice versa.)
The values of Spearman’s ρ for the averaging approach are high (0.76), but not too close

to 1, as would seem reasonable. The maximum and minimum are going to be extreme (and
in fact average to the dA). What is interesting is that the Hausdorff ranges from being equal
to the maximum when z has no ties, to being equal to the minimum when z has the most
ties. At first it might seem unusual that the less-specific z achieves the smallest distance from
w, but in this case for the last z, the compatibility sets for w and z are the same, hence their
Hausdorff distance is zero. When z = (1, 2, . . . , 10), we are comparing a large compatibility set
W with a singleton set {z}, hence the Hausdorff distance is the maximum between z and those
in W. Thus we may expect Hausdorff to tend to be larger the more discrepant the numbers of
ties in the vectors.

We redid the calculations after randomly shuffling the z. Now among the first five slots,
there are two low values and three high, and vice versa for the last five, hence intuitively we
might expect ρ to be slightly negative, as indeed it is for the averaging approach. Note that
the minimum and maximum are quite extreme, and differing in sign. Hausdorff again shows
the distance decreasing as the compatibility sets become closer in size, where the ρ increases
quite a bit from −0.62 to +0.03.

z Averaging Hausdorff Minimum Maximum

(6, 9, 4, 10, 1, 8, 5, 3, 2, 7) −0.1515 −0.6242 0.3212 −0.6242
(3, 4, 2, 4, 1, 3, 2, 1, 1, 3) −0.3030 −0.5879 0.3212 −0.8667
(2, 2, 1, 2, 1, 2, 2, 1, 1, 2) 0.0000 0.0303 0.8182 −0.8182

(12.8)

The above are just a few examples, but they do point out that the approaches are quite differ-
ent, and at least to me suggest that the averaging is most intuitive.

The main goal of this chapter is to calculate the averaging approach for the given distances.
See Section 12.1. Critchlow (1985) gives a thorough analysis of the Hausdorff approach, which
we summarize in Section 12.2. Chapters 13, 14, and 16 go into more detail on the distributional
aspects for the Spearman and Kendall distances.

12.1 Averaging
As above, we will define a tied ranking to be an m× 1 vector w with values from the set
{1, . . . ,K} for some K, where each value in that set is represented in w. Thus w = (1, 3, 2, 1, 3)
is valid, while w = (1, 3, 4, 1, 3) is not. The lower the value of wi, the more object i is preferred.
If wi = wj, then objects i and j are equally preferred. The compatibility set as in (12.1) is here

C(1, 3, 2, 1, 3) = {(1, 4, 3, 2, 5), (1, 5, 3, 2, 4), (2, 4, 3, 1, 5), (2, 5, 3, 1, 4)} ⊂ Pm. (12.9)
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A formal general definition of the compatibility set uses Kendall’s distance:

C(w) = {x ∈ Pm |
∑∑
16j<i6m

I[(wi −wj)(xi − xj) < 0] = 0}. (12.10)

The averaging approach seems most reasonable for the Spearman and footrule (and more
generally, Lp) distances, and Kendall’s distance. It also makes sense for the Ulam and max-
imum distances, although for ease of calculation, one might prefer to use the Hausdorff,
maximum, or minimum in (12.5) rather than the average. Section 12.3 presents a modification
of the Hausdorff approach that may be more appealing for these distances. In Section 12.2.1,
we discuss whether this approach to tied rankings makes sense for bi-invariant distances.

We can represent the distribution of elements in the compatibility set as

X |W = w ∼ Uniform(C(w)). (12.11)

Then if the marginal distribution of W is uniform over the permutations of w, the uncon-
ditional distribution of X is Uniform(Pm). If z is another tied ranking, and Y |Z = z ∼

Uniform(C(z)), independent of (W ,X), then we can represent the distance in (12.5) as

dA(w, z) = E[d(X ,Y ) |W = w,Z = z]. (12.12)

We need to find the distributions (12.11). Let m be pattern of ties for w, i.e., the counts for
its elements:

m = (m1, . . . ,mK), ma = #{i |wi = a}. (12.13)

As x runs over the compatible set C(w), the individual xi’s run over ranks determined by
their values. That is, the xi’s with wi = 1 have the lowest ranks, then come those with wi = 2,
etc. Specifically, denoting the cumulative sums of the m by

m6a =

{
0 if a = 0
m1 + · · ·+ma if a = 1, . . . ,K

, (12.14)

and let m<a = m6a−1. Then we have

wi = 1⇒ xi ∈ {1, . . . ,m1};
...

wi = a⇒ xi ∈ {m<a + 1, . . . ,m6a};
...

wi = K⇒ xi ∈ {m<K + 1,m}. (12.15)

For example, suppose w = (1, 3, 4, 4, 2, 2, 3, 3, 2, 3). Then there is one 1, three 2’s, etc. so
m = (1, 3, 4, 2) and we have xi ∈ {m6w1−1 + 1, . . . ,m6wi}, where

i wi m<w1 + 1 m6wi mwi

1 1 1 1 1
5, 6, 9 2 2 4 3

2, 7, 8, 10 3 5 8 4
3, 4 4 9 10 2

(12.16)
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E.g., w2,w7,w8 and w10 all equal 3, so the corresponding xi’s go from m1 +m2 + 1 = 5 to
m1 +m2 +m3 = 8.

The values of Xi and Xj are conditionally independent if they are from different groups,
that is, if wi 6= wj. The vector of Xi’s from the same group are distributed uniformly over the
permutations of their range,

(Xi |Wi = a) |W = w ∼ Uniform(Permutations(m<a + 1, . . . ,m6a)). (12.17)

Thus for the example in (12.16),

X1 |W = w ∼ Point mass at 1,
(X5,X6,X9) |W = w ∼ Uniform(Permutations(2, 3, 4)),

(X2,X7,X8,X10) |W = w ∼ Uniform(Permutations(5, 6, 7, 8)),
(X3,X4) |W = w ∼ Uniform(Permutations(9, 10)), (12.18)

and the four vectors are conditionally independent.
Consider two tied rankings, w and z, for the same set of objects, so that C(w) and C(z)

are their compatibility sets. Let n be the vector of counts for z, so that nb = #{i | zi = b},
and define n6b as in (12.14) for n. The remainder of this section considers specific distances.
The Hoeffding distances and Kendall’s distance have reasonably tractable extensions using
the averaging, and is the traditional approach for Spearman and Kendall. We have not found
simple formulas to apply the averaging to the other distances. We can always enumerate over
the
∏
ma!
∏
nb! values for X and Y in (12.5) if the counts are fairly small, or use simulations

if not.
In Section 12.2.1, we note that the above method for dealing with ties may not make sense

for the bi-invariant distances, and present alternatives.

12.1.1 Hoeffding distances

As in (3.1), a Hoeffding distance is of the form

d(x,y) =
m∑
i=1

δ(xi,yi) (12.19)

for given function δ. The averaging (12.11) is now

dA(w, z) =
m∑
i=1

E[δ(Xi, Yi) |W = w,Z = z]. (12.20)

Thus we need just the marginal distributions of Xi’s and Yi’s. By (12.17) we see that they are
conditionally independent and uniform over their conditional spaces spaces given in (12.15).
Then (12.20) can be reasonably easily applied to specific δ’s. In fact, we can write the distance
in (12.20) as a Hoeffding distance with

δ∗(a,b) =

∑m6a
x=m<a+1

∑m6b
y=m<b+1 δ(x,y)

manb
. (12.21)
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Then we have

dA(w, z) =
m∑
i=1

δ∗(wi, zi). (12.22)

Consider Spearman’s distance. We have from (4.39)

dSpear(x,y) =
m(m+ 1)(2m+ 1)

3
− 2

m∑
i=1

xiyi. (12.23)

Then for fixed w and z, we have

dA
Spear(w, z) =

m(m+ 1)(2m+ 1)
3

− 2
m∑
i=1

E[Xi |W = w]E[Yi |Z = z]. (12.24)

The E[Xi |W = w] and E[Yi |Z = z] are well-known as the midranks of the vectors w and z,
respectively. In R, the default output of the function rank(w) is the midrank vector, hence we
set

rank(w)i = E[Xi |W = w] =
m<wi−1 +m6wi + 1

2
, (12.25)

and similarly for z. Then we can write

dA
Spear(w, z) =

m(m+ 1)(2m+ 1)
3

− 2
m∑
i=1

rank(w)irank(z)i. (12.26)

By (1.4), for Hamming’s distance, δ(x,y) = 1 − I[x = y], hence

δ∗(a,b) = 1 −

∑m6a
x=m<a+1

∑m6b
y=m<b+1 I[x = y]

manb

= 1 −
#({m<a + 1, . . . ,m6a}∩ {n<b + 1, . . . ,n6b})

manb

= 1 −
(min{m6a,n6b}− max{m<a,n<b})+

manb
. (12.27)

Here, z+ = max{z, 0}.
For the footrule in (1.4), δ(x,y) = |x− y|, so that

δ∗(a,b) =

∑m6a
x=m<a+1

∑m6b
y=m<b+1 |x− y|

manb
. (12.28)

To find a formula for the numerator of (12.28), we need to figure out which parts of the ranges
of x’s and y’s overlap, and which are disjoint. It’s useful to define the following summations:

If i 6 j 6 k 6 l : f(i, j,k, l) =
j∑

x=i+1

l∑
y=k+1

|x− y| =

(
k+ l

2
−
i+ j

2

)
(j− i)(l− k);

if i 6 j : g(i, j) =
j∑

x=i+1

j∑
y=i+1

|x− y| =
(j− i)2 − 1

3
(j− i). (12.29)
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The first case has y > x, so we are finding a multiple of the difference in average values of the
y’s and the x’s. The second case is m times the average value of the footrule in (1.10) when
there are no ties and m = j− i.

For the general case, for fixed a and b, set i = m<a, j = m6a, k = m<b and l = m6b. We
consider some cases based on the ordering of i, j,k, l, with i 6 k, where we automatically have
i < j and k < l. Then

j∑
x=i+1

l∑
y=k+1

|x− y| =


f(i, j,k, l) if i < j 6 k < l
f(i,k,k, l) + g(k, j) + f(k, j, j, l) if i 6 k < j 6 l
f(i,k,k, l) + g(k, l) + f(k, l, l, j) if i 6 k < l < j

. (12.30)

If k < i, then we switch the roles of (i, j) and (k, l), i.e.,

(i, j,k, l) =

{
(m<a,m6a,n<b,n6b) if m<a 6 n<b
(n<b,n6b,m<a,m6a) if n<b < m<a

. (12.31)

12.1.2 Kendall’s distance

Turn to Kendall’s distance. Using (12.5) and (6.1), we have

dA
Ken(w, z) =

∑∑
16j<i6m

P[(Xi −Xj)(Yi − Yj) < 0 |W = w,Z = z]. (12.32)

If wi 6= wj, then the ranges of Xi and Xj do not overlap, and are in the same direction as wi
and wj. That is

wi > wj ⇒ Xi > Xj and wi < wj ⇒ Xi < Xj. (12.33)

If wi = wj, then (Xi,Xj) are equally likely to be any distinct pair of values from lw(i) to uw(i),
so that P[Xi −Xj > 0 |W = w] = P[Xi −Xj < 0 |W = w] = 1

2 . Similarly for the z and Y . Since
X and Y are independent, we have that

P[(Xi −Xj)(Yi − Yj) < 0 |W = w,Z = z] =


1 if (wi −wj)(zi − zj) < 0
1
2 if (wi −wj)(zi − zj) = 0
0 if (wi −wj)(zi − zj) > 0

. (12.34)

Thus

dA
Ken(w, z) =

∑∑
16j<i6m

(
I[(wi −wj)(zi − zj) < 0] + 1

2 I[(wi −wj)(zi − zj) = 0]
)

. (12.35)
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This distance can be written as the sum of the usual Kendall distance, dKen(w, z), plus an
adjustment for ties, which is

1
2

∑∑
16j<i6m

I[(wi −wj)(zi − zj) = 0] =
1
2
(#{i < j |wi = wj}+ #{i < j | zi = zj}

− #{i < j |wi = wj & zi = zj})

=
1
2

(
K∑
a=1

(
ma

2

)
+

L∑
b=1

(
nb
2

)
−

K∑
a=1

L∑
b=1

(
tab
2

))

=
1
4

(
K∑
a=1

m2
a +

L∑
b=1

n2
b −

K∑
a=1

L∑
b=1

t2ab −m

)
. (12.36)

where
tab = Tab(w, z) ≡ #{i |wi = a & zi = b}. (12.37)

12.1.3 Other distances

We have not been able to discover simpler methods for applying the averaging to ties for the
Ulam, Cayley, or maximum distances. Section 12.2.1 suggests alternatives for Cayley (and
Hamming) that better conform to bi-invariance, and the Hausdorff approach is convenient for
Ulam and maximum as seen in Section 12.2. In any case, if the compatibility sets W and Z

are not too large (say, #C(w)× #C(z) 6 20 million), then the averaging (12.5) can be calculated
directly. For larger sizes, randomly sampling pairs (x(k),y(k)) ∈ C(w)× C(z) as in (12.17),
then averaging the d(x(k),y(k))’s, will at least yield an unbiased estimate of the true dA(w, z).

12.2 Hausdorff distances
Critchlow (1985) develops expressions for the Hausdorff distance (12.3, 12.4) based on the
Spearman, footrule, Kendall, Hamming, and Ulam distances. He also treats Cayley’s distance
for tied rankings with patterns m = (1, 1, . . . , 1,m− q), where there are q 1’s. (So people rank
their top q choices, the rest being tied at the bottom.) See his theorem in section D. We present
the results for all but Cayley’s distance here, as well as that for the maximum distance.

We can think of finding the Hausdorff distance as a two-person game, the two people
being W and Z, with tied rankings w and z. Each has a set of compatible rankings to choose
from, W and Z, respectively. Fix a distance d on the rankings. There are two rounds. In the
first round, W first chooses a ranking x from W, then Z chooses y from Z knowing what W’s
choice is. W’s score is then d(x,y). In round two, the roles are switched, so that Z chooses a
y ′ ∈ Z first, then W chooses an x ′ ∈ W, and Z’s score is d(x ′,y ′). Whoever has the highest
score wins, so W’s goal in the first round is to choose x to maximize, and Z’s to choose y
to minimize, d(x,y). In round two it’s the reverse. As a game it is not very exciting, since
the outcome is predetermined unless someone makes a mistake. But we do have that the
Hausdorff distance is the winning score, i.e.,

dH(w, z) = max{d(x,y),d(x ′,y ′)}. (12.38)
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The strategy for Spearman, footrule, Kendall, Ulam, and maximum is the same. We con-
sider an illustrative example. Let w = (1, 1, 1, 2, 2, 3, 3, 3) and z = (2, 4, 3, 3, 1, 3, 2, 3). We start
with round one. Since the distances are label-invariant, we can rearrange the objects so that
w is nondecreasing (it already is), and for objects with wj equal given value i, the rankings in
z are nondecreasing. Thus we have

w → 1 1 1 2 2 3 3 3
z → 2 3 4 1 3 2 3 3 . (12.39)

W wants to maximize the distance, so chooses an x that as much as possible goes in the
reverse order of z. That is, for wj = 1, the zj’s are 2, 3, 4, so W chooses the corresponding xj’s
to be 3, 2, 1. For xj = 2, the xj’s are 5, 4. For xj = 3, the xj’s are 8, 7, 6, though 8, 6, 7 works
just as well. Thus we have

x→ 3 2 1 5 4 8 7 6
z → 2 3 4 1 3 2 3 3 , (12.40)

i.e., within each grouping of wj’s we put the compatible ranks in reverse order. Now rear-
range again so that the z is in nondecreasing order, and within each value of zj’s, the x is in
increasing order

x→ 5 3 8 2 4 6 7 1
z → 1 2 2 3 3 3 3 4 . (12.41)

Now Z chooses y to minimize the distance, which entails for each value of zj choosing the
yj’s in the same order as the xj’s. Since the latter are increasing within each group, we take
y = (1, 2, . . . ,m):

x→ 5 3 8 2 4 6 7 1
y → 1 2 3 4 5 6 7 8 . (12.42)

Now W’s score is d(x,y).
Round two switches the roles of W and Z, the steps beginning and ending as

z → 1 2 2 3 3 3 3 4
w → 2 1 3 1 2 3 3 1 → y ′ → 3 7 8 1 6 2 4 5

x ′ → 1 2 3 4 5 6 7 8 . (12.43)

Then Z’s score is d(x ′,y ′), and the Hausdorff distance is as in (12.38). The results for the four
distances are next, along with the averaging distance:

Spearman Footrule Kendall Ulam Max

d(x,y) 96 20 15 4 7
d(x ′,y ′) 98 26 15 4 5
dH(w, z) 98 26 15 4 7
dA(w, z) 96.5 22.92 15.5 4.63 6.09

(12.44)

We formalize this process. We will say that a pair of possibly tied m rankings (w,z) is in
lexicographical order if for any i < j, wi 6 wj, and if wi = wj, then zi 6 zj. See, e.g., (12.39).
Given w, z, and a distance d among the distances Spearman, footrule, Kendall, Ulam, and
maximum, dH(w, z) can be calculated using the following steps.

1. Relabel the objects so that (w, z) is in lexicographical order.
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2. Defining l(w) and u(w) as in (12.15) and (12.16) for w (with values from 1 to K), set

x = (u
(w)
1 , . . . , l(w)

1 ,u(w)
2 , . . . , l(w)

2 , . . . ,u(w)
K , . . . , l(w)

K ). (12.45)

See (12.40).

3. Relabel the objects so that now (z,x) is in lexicographical order. See (12.41).

4. Relabel the objects so that (z,w) is in lexicographical order.

5. Define l(z) and u(z) for z (with values from 1 to L), and set

y ′ = (u
(z)
1 , . . . , l(z)1 ,u(z)2 , . . . , l(z)2 , . . . ,u(z)L , . . . , l(z)L ). (12.46)

6. Relabel the objects so that (w,y ′) is in lexicographical order.

7. With ν = (1, . . . ,m), x from step 3, and y ′ from step 6, we have

dH(w, z) = max{d(x,ν),d(ν,y ′)}. (12.47)

The result for the first four distances are given by the theorem in Section D of Critchlow
(1985). We can show that the method also holds for the maximum distance by using Lemma
2 in that section. Consider the partial ordering on Pm proposed by Henery (1981) that states
that x is less than y if they agree on all but two objects, and only for x, they are in increasing
order:

x <H y if for some i < j xk = yk for k 6= i, j, xi < xj, and yi > yj. (12.48)

Critchlow’s lemma shows that if x <H y implies that d(ν,x) 6 d(ν,y) for ν as in step 7,
then the Hausdorff measure can be calculated as in (12.47) using the steps 1 to 7. To see
that the lemma can be applied to the maximum distance, take x and y as in (12.48). Then
(xi, xj) = (yj,yi), and we will show that

max{|i− yi|, |j− yj|} = max{|i− xj|, |j− xi|} > max{|i− xi|, |j− xj|}. (12.49)

Consider the cases defined by the relative ordering of xi, xj, i, j:

xi 6 i, xj 6 j ⇒ |j− xi| > |i− xi| & |j− xj|;
xi 6 i < j 6 xj ⇒ |j− xi| > |i− xi| & |i− xj| > |j− xj|;
i 6 xi < xj 6 j ⇒ |j− xi| > |j− xj| & |i− xj| > |i− xi|;
i 6 j, xi 6 xj ⇒ |i− xj| > |i− xi| & |j− xj|. (12.50)

Any of those possibilities implies (12.49), which in turn implies

dMax(ν,y) = max{max
k 6=i,j

|k− xk|, |i− xj|, |j− xi|}

> max{max
k 6=i,j

|k− xk|, |i− xi|, |j− xj|} = dMax(ν,x). (12.51)
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The above does not work for Hamming’s distance, nor I imagine for any bi-invariant
distance. We again refer to the theorem of Critchlow (1985). We need two K× L matrices, A
and B, where

aij = #{k |wk = i & zk = j} and bij = #{lw(i), . . . , . . . ,uw(i)}∩ {lz(j), . . . , . . . ,uz(j)}. (12.52)

Then with λw and λz being the patterns of ties (12.13), we have

dH
Ham(w, z) = max{

K∑
i=1

L∑
j=1

(aij + bij − λw(i))
+,

K∑
i=1

L∑
j=1

(aij + bij − λz(j))
+}. (12.53)

For Cayley’s distance, we can find the Hausdorff extension by explicitly enumerating the
compatible rankings, which is practical only if the sizes of W and Z are not too large. We refer
to Critchlow (1985) for the extension in the special case mentioned in the first paragraph.

12.2.1 Bi-invariant distances

If d is bi-invariant, any of the formulas in (12.3), (12.5), and (12.6) can certainly be used, but
whether the compatibility approach to ties makes sense when the situation is inherently rank-
invariant is questionable. For example, take m = 3, and let w = (2, 1, 2) be a tied ranking.
Then the compatible set is C(w) = {(2, 1, 3), (3, 1, 2)}. Consider the permutation of the ranks
where 1 and 2 are switched. What is the new tied ranking w∗? The compatibility set becomes
C(w∗) = {(1, 2, 3), (3, 2, 1)}. But there is no w∗ that yields this compatibility set. The problem
is that two objects can be tied only if their rankings are consecutive, and consecutivity is not
invariant under rank permutations. There may be an alternate definition of compatibility sets
that will preserve rank-invariance when there are ties. Instead, it is probably advisable to take
a different tack.

Hamming’s distance was originally, and still primarily, used to measure the distance of any
two finite sequences, not just permutations of integers. Thus it has an immediate extension to
rankings with non-distinct elements. Matching is key, so it may be easier to think of the ranks
as a set of m colors, say. A ranking is a vector of m colors. Ties would be repetitions of the
same color. Then for two such vectors, Hamming’s distance would be as before,

dHam(w, z) = m− #{i |wi = zi}. (12.54)

So ifm = 4 and the colors are {red, blue, green, yellow}, we could havew = (red, green, red, blue)
and z = (blue, green, yellow, blue), so that dHam(w,x) = 2. The setup is invariant under per-
muting the colors. E.g., the permutation red → green, green → yellow, and yellow → red
yields

w∗ = (green, yellow, green, blue) and z∗ = (blue, yellow, red, blue), (12.55)

which again has dHam(w∗, z∗) = 2. Using integers, we’d have a tied ranking be a vector with
components drawn from {1, . . . ,m}, so that now, e.g., w = (1, 3, 4, 1, 3) would be a valid tied
ranking.

Cayley’s distance can be similarly extended, at least for tied rankings with the same
patterns. That is, suppose x and y are tied ranks with the values from 1 to K, where
#{i |wi = k} = #{i | zi = k} for each k. Then dCay(w, z) is the minimum number of trans-
positions to bring z to x. Diaconis (1988, page 127) has another suggested distance using
adjacent transpositions.
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12.3 Alternatives for Ulam and maximum
As mentioned at the start of this Section 12.1, the calculations for the averaging applied to the
Ulam or maximum distance can be challenging if the ma and na are not small. Tractable alter-
natives include the Hausdorff distance in Section 12.2, as well as the minimum and maximum
approaches in (12.6).

For the maximum distance, the latter two methods are easily applied since we can calculate
them on the ranges of (Xi, Yi) for each i individually. That is,

dM
Max(w, z) = max

16i6m
max{|u(w)

i − l
(z)
i |, |u(z)i − l

(w)
i |} and

dm
Max(w, z) = max

16i6m
max{l(z)i − u

(w)
i , l(w)

i − u
(z)
i , 0}. (12.56)

Turn to Ulam’s distance. With no ties, Ulam’s distance is based on the length of the
longest increasing subsequence of the yi’s, once the components are rearranged so that x =
ω = (1, . . . ,m). Then we can define Ulam’s distance as in (8.4) to be m− S, where S is the
longest set of distinct indices i1, . . . , iS such that xi1 , . . . , xiS and yi1 , . . . ,yiS are both strictly
increasing sequences. With tied rankings w and z, we could consider either or both of these
sequences to be nondecreasing. The most conservative approach, which yields dM

Ulam(w, z), is
to demand strict increasingness. That is, we find longest sequence such that

wi1 < wi2 < · · · < wiS and zi1 < zi2 < · · · < ziS . (12.57)

The most generous is to find the longest sequence of nondecreasing components, which yields
dm

Ulam(w, z):
wi1 6 wi2 6 · · · 6 wiS and zi1 6 zi2 6 · · · 6 ziS . (12.58)

We could also contemplate using strict inequality for just one vector, i.e., consider m− S
or m− T , where S is the longest sequence such that

wi1 < wi2 < · · · < wiS and zi1 6 zi2 6 · · · 6 ziS , (12.59)

while T is the longest such that

wi1 6 wi2 6 · · · 6 wiT and zi1 < zi2 < · · · < ziT . (12.60)

It may be that the particular context of the ranking situation dictates one of the above to
be the most appropriate. If not, the maximum (12.57) or minimum (12.58) approaches are
generally too extreme. Also, the alternative in (12.59) is generally conservative, since S is
bounded by K, the number of distinct values in w, and similarly for (12.60).
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Tied Ranks: Spearman

If w and z are rank vectors with ties, then Spearman’s distance can be given by expressions
analogous to (4.39) and (4.6), replacing the rank vectors by their midrank vectors. That is,

dA
Spear(w, z) =

2m(m+ 1)(2m+ 1)
3

− 2
m∑
i=1

risi, and

= µSpear(m) − 2
m∑
i=1

(ri − ν)(si − ν), (13.1)

where
r ≡ rank(w) and s ≡ rank(z) (13.2)

are the corresponding vectors of midranks (12.25),

µSpear(m) ≡ E[dA
Spear(W ,Z)] =

m(m2 − 1)
6

, and ν = (m+ 1)/2. (13.3)

Consider the range of dA
Spear. Let r(o) and s(o) be the midrank vectors with the elements in

order from lowest to highest, e.g.,

r(o) = (t1, . . . , t1, t2, . . . , t2, . . . , tK, . . . , tK) , ta =
m<a +m6a + 1

2
, (13.4)

and there are ma of the ta’s, a = 1, . . . ,K. The s(o) is defined similarly in terms of nb’s. Then
we have the rearrangement inequalities

v1 ≡
m∑
i=1

r
(o)
i s

(o)
m−i+1 6

m∑
i=1

risi 6
m∑
i=1

r
(o)
i s

(o)
i ≡ v2. (13.5)

Thus with cm = 2m(m+ 1)(2m+ 1)/3,

u1 ≡ cm − 2v2 6 dA
Spear(w, z) 6 cm − 2v1 ≡ u2. (13.6)

Since the midranks are either integers or half integers, so are the values of dA
Spear. Thus we

have
dA

Spear(w, z) ∈ {u1 +
i

2
| i = 0, . . . , 2(u2 − u1)} ≡ U(m,n), (13.7)

151



DRAFT

152 CHAPTER 13. TIED RANKS: SPEARMAN

though depending on the actual values in the r and s, it may be that not all values in the set
are achievable.

In Chapter 4, we treat the case with no ties. A splitting algorithm is used to find the
exact distribution of Spearman’s distance for m 6 25, and Edgeworth expansions are used
to find approximations for larger m. Fortunately, the approximations work well for m near
25, so one of these two techniques will always be useful. In the ties case, we again have
an exact splitting algorithm and Edgeworth expansions, but they do not appear to cover
all possibilities adequately. That is, the splitting algorithm works quickly for m 6 13, and
generally Edgeworth expansions are good for largem and most patterns of ties, but depending
on m and the patterns of ties, it may be that neither approach works well. For some patterns,
especially those with few distinct values in the rankings, we can use a contingency table
approach to find the exact distribution. In case none of these approaches is useful, we use
randomizations. An extra difficulty is that it is not always easy to determine which approach
is best.

The next section briefly covers two methods for finding the exact distribution, the split-
ting algorithm and one based on contingency tables. Section 13.2 presents formulas for the
moments, and Section 13.3 gives conditions for asymptotic normality to hold. Section ?? com-
pares the approaches and makes some recommendations about when to use which approach.

13.1 Exact distribution

We have two algorithms for finding the exact distribution of Spearman’s distribution with
ties. The first is the splitting algorithm from Section 4.3 for the case with no ties. Though
when there are ties, some of the symmetries that speed up the algorithm are unavailable. This
procedure is reasonably fast for m 6 13 or so.

The other algorithm is based on writing a pair of tied rankings as a contingency table, then
writing Spearman’s distance as a simple function of the table. The exact distribution is found
by enumerating all the possible contingency tables given the rankings, and finding each one’s
probability. This procedure is reasonable if there are not too many possible tables, e.g., under
about three million, which generally needs m 6 50, possibly much less. Unfortunately, it is
not easy to determine the number of tables apriori, i.e., without enumerating. See the end of
Section 13.1.2.

If K = 2 and Z has no ties (so L = m), we have the Mann-Whitney/Wilcoxon statistic, in
which case the Spearman and Kendall distances adjusted for ties are equivalent. Thus we can
use the exact algorithm in Section 14.3.

13.1.1 Splitting algorithm

We start by considering the distribution of the random part of Spearman’s distance (13.1), Sr ′

where S = rank(Z). Take m1 ≈ m/2 and m2 = m−m1. As in Section 3.3, we consider all
splittings S = (R1,R2), where R1 is a subset of m1 distinct elements from {1, . . . ,m}, and R2 is
its complement. For given splitting, let

s(j) = (si1 , . . . , simj ) where R(j) = {i1, . . . , imj}, i1 < · · · < imj ; j = 1, 2. (13.8)
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Then conditional on the splitting,

S(1) = (S1, . . . ,Sm1) | S ∼ Uniform(Permutations of s(1)},

S(2) = (Sm1+1, . . .Sm) | S ∼ Uniform(Permutations of s(2)}, (13.9)

where S(1) and S(2) are conditionally independent, as in (3.28) and (3.29). We write

Sr ′ = S(1)r(1)
′
+S(2)r(2)

′
. (13.10)

Then as in (3.31), we can enumerate over the permutations of each s(j) to find the conditional
probabilities

fj(u | S) = P[S
(j)r(j)

′
= u | S], j = 1, 2,u ∈ C, (13.11)

where r(1) = (r1, . . . , rm1), r
(2) = (rm1+1, . . . , rm). The C is a set large enough to accomodate all

the spaces we need, which at most is

C = {1 + k/4 |k = 0, . . . , 4(m− 1)}. (13.12)

Then the distribution of Sr ′ given the splitting is, as in (3.32),

f(x | S) =
∑
u∈C

f1(u | S)f2(x− u | S); (13.13)

and the unconditional distribution is, as in (3.36),

f(x) = P[Sr ′ = x] =

(
m

m1

)−1 ∑
Splittings S

f(x | S), x ∈ C. (13.14)

The distribution of the distance is

P[dA
Spear(w, z) = u] = f

(
cm − u

2

)
, u ∈ U(m,n), (13.15)

where U is given in (13.7).

13.1.2 Contingency tables

If K and L are small, and m not too large, a more efficient approach to finding the exact
distribution is based on representing the tied rankings in a contingency table. Thus for tied
rankings w and z, set

Tab(w, z) = #{i |wi = a, zi = b}, 1 6 a 6 K, 1 6 b 6 L, (13.16)

as in (12.37). Then the matrix T (w, z) of the Tab(w, z)’s is a K× L contingency table with row
totals m = (m1, . . . ,mK) and column totals n = (n1, . . . ,nL), the vectors of counts as in (12.13).
Then for a general Hoeffding distance, if T (w, z) = t, we have

dA
Hoeff(w, z) =

K∑
a=1

L∑
b=1

tabδ
∗(a,b) (13.17)
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for δ∗ in (12.21). This formula applied to Spearman is

dA
Spear(w, z) = dA

Spear(t) ≡ cm − 2
K∑
a=1

L∑
b=1

tab
m<a +m6a + 1

2
n<b +n6b + 1

2
. (13.18)

The exact distribution can be found by iterating over all possible such contingency tables,
and multiplying by the tables’ probabilties, which are given by

g(t) ≡ P[T (W ,Z) = t] =

∏K
a=1ma!

∏L
b=1 nb!

m!
∏K
a=1
∏L
b=1 tab!

(13.19)

Thus
f(u) ≡ P[dA

Spear(W ,Z) = u] =
∑

t |d
A
Spear(t)=u

g(t), u ∈ U(m,n). (13.20)

Verbeek & Kroonenberg (1985) and Mehta & Patel (1983) describe some iterative proce-
dures, and provide references to others. We next sketch a fairly simple approach. We wish
to find all the K× L contingency tables t with row marginals m = (m1, . . . ,mK) and column
marginals n = (n1, . . . ,nL). Since the last row and column are determined by the other cells,
it is enough to consider the upper-left (K− 1)× (L− 1) part of the table. We next string out
the rows, defining the (K− 1)(L− 1)-length vector

v = (t11, . . . , t1,L−1, t21, . . . , t2,L−1, . . . , tK−1,1, . . . , tK−1,L−1). (13.21)

We fill the v in from left to right. For each element i, we need the minimum and maximum
values it could take on, given the first i− 1 elements (and the marginal constraints). Denote
these minima and maxima, respectively, by

αi(v1, . . . , vi−1) and ωi(v1, . . . , vi−1). (13.22)

For i = 1, these are the minimum and maximum the first cell could possibly be.
The algorithm has two basic steps. We start with f(u) = 0 for all u, i = 1, and v1 = l1.

1. Given the values of v1, . . . , vi, fill in the rest of the table from left to right with the
minimum possible at that stage:

vj ← αj(v1, . . . , vj−1), j = i+ 1, . . . , (K− 1)(L− 1). (13.23)

The final result is a valid table, which we record. Letting t be its K × L version, we
update the f:

f(u)← f(u) + P[T = t], where u = d
A
Spear(t). (13.24)

2. Start at the end of the table from step 1, and backtrack until you find an element that
can be increased by one. That is,

i← max{j | vj < ωj(v1, . . . , vj−1)}. (13.25)

If i does not exist (i.e., all cells are at their maxima), then we are done. Otherwise, set

vi ← vi + 1. (13.26)

Go back to step 1, where v1, . . . , vi are now determined.
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To find the bounds in (13.22), we use the K×L version of the table. Suppose the ith element
in v corresponds to cell (a,b), so that vi = tab. It is enough to consider the part of the table
extending from cell (a,b) to the lower right, and collapse it into a 2× 2 table with tab as the
upper-left cell. Extend the definition in (12.14) to the tab, so that

ta,6b =

b∑
l=1

ta,l, t6a,6b =

a∑
k=1

b∑
l=1

tkl, (13.27)

and similarly for other inequalities. Then the collapsed table looks like

tab ∗ ma − ta,<b
∗ ∗ ∗

nb − t<a,b ∗ m−m<a −n<b + t<a,<b

(13.28)

Here the asterisked cells can be found by subtraction. Note that the marginals are given in
terms of the known quantities m,n and v1, . . . , vi−1. Now we are in the familiar hypergeomet-
ric situation, where we have that tab is bounded from above by its row total and its column
total, and bounded from below by zero and the sum of the row and column totals minus the
overall total. Thus the quantities in (13.22) are

αi = max{0,m6a +n6b −m− t<a,6b − ta,<b} and ωi = min{ma − ta,<b,nb − t<a,b} (13.29)

Estimating the number of tables

To decide whether enumerating all the possible contingency tables is viable for a particular
pair of tied rankings, we would like to efficiently approximate the total number of such tables.
There are several approaches. See Diaconis & Gangolli (1995) for an overview. Most of these
demand larger m than we can accommodate, or other conditions such as sparseness. The best
simple approach we have found for our purposes is in Good (1976). For fixed w and z, let #T
be the number of possible t’s. Then Good suggests that

#T ≈ AL(m)AK(n)

BKL(m)
, (13.30)

where

AL(m) =

K∏
a=1

(
ma + L− 1

ma

)
and,

B(m,n) =
(
m+KL− 1

m

)
. (13.31)

Note that AL(m) is the number of K×L tables with row marginals given bym (and no restric-
tions on column marginals); AK(n) is the number with column marginals n; and BKL(m) is
the number with no restrictions other than having a total ofm. The intuition given is based on
imagining randomly picking a K× L table with a total of m. The chance it has row marginals
m is AL(m)/BKL(m), and the chance that it has column marginals n is AK(n)/BKL(m). If the
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row and column marginals are independent (which they are generally not), then the chance
of any single table having those marginals is the product of those two probabilities, and the
number of such tables is AL(m)AK(n)/BKL(m). He also proposes the extension

#T ≈ AL(m)AK(n)CL(m)CK(n)

BKL(m)
, where CL(m) =

1.3m2

L
∑K
a=1m

2
a

. (13.32)

The C factors in (13.32) are given as adjustments for roughness. We have found this adjustment
does not improve the estimates, so we will focus on (13.30).

A slightly slower approach uses simulations to estimate #T. In (13.19) we have g(t), the
probability of any particular table t. Consider the random variable 1/g(T (W ,Z)) for random
(X ,Y ). Then

E

[
1

g(T (X ,Y ))

]
=
∑
t∈T

1
g(t)

P[T (W ,Z) = t] = #T. (13.33)

To estimate #T we randomly sample n observations (x,y), for each find their tables t, and
average their 1/g(t). Even for n = 1000, this estimate improves on that in (13.30). The
variance of 1/g is

Var[1/g(T (W ,Z))] = E

[
1

g(T (X ,Y ))2

]
− #T2 =

∑
t∈T

1
g(t)

− #T2, (13.34)

which can be quite high if some of the individual probabilities are very low, though in our
simulations it hasn’t seemed to be too bad. The estimated standard errors tend to be of the
order of 10% of the mean.

13.2 Moments
The moments for Spearman’s distance with ties are found much as they are when there are
no ties in Sections 4.1 and 4.2. Let w and z be fixed values for the vectors with ties, so
that the distributions of the vectors can be represented as W = wQ and Z = zQ where,
as in (3.4), Q is distributed uniformly over the m ×m permutations matrices. Thus since
rank(wQ) = rank(w)Q, setting r = rank(w) and s = rank(z),

Var[rank(W )rank(Z) ′] = Var[rQs ′]

=
(rHr ′)(sHs ′)

m− 1
. (13.35)

The covariance of Q is given in (3.7), and H is the centering matrix in (3.8). Then by (13.1),
because of the factor 2,

Var[dA
Spear(W ,Z)] = 4

∑
(ri − ν)

2∑(si − ν)
2

m− 1
. (13.36)

For higher moments, we can follow the development in Section 4.2, but need to adjust the
τ’s to take into account the midrank values. The main modification involves the expression in
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(4.14), where here we have

E[Vn] =
∑

16j1,...,jd6m
distinct

E[(rank(Wj1)−ν)
n1 · · · (rank(Wjd)−ν)

nd](rj1 −ν)
n1 · · · (rjd −ν)

nd . (13.37)

Then we can derive, as from (4.7) and (4.19), the formula

E[(dA
Spear(W ,Z) − E[dA

Spear(W ,Z)])n] = (−2)n
∑

n∈IPn,m

ζn
τr(n)τs(n)

(m)d
, (13.38)

where IPn,m is the set of integer partitions of n with at most m components, ζn is the number
of set partitions corresponding to n, d is the number of elements in the vector n, and

τr(n) =
∑
· · ·
∑

16j1,...,jd6m
distinct

(rj1 − ν)
n1 · · · (rjd − ν)

nd . (13.39)

The iterative formula in (4.27) also holds here for τr, but with η also depending on r, i.e.,
instead of (4.24) we have

ηr,k =

m∑
i=1

(ri − ν)
k. (13.40)

13.3 Asymptotic distributions
The asymptotics for Spearman’s distance with ties depend on the most common tied value.
Specifically, denote mx = max{ma} and nz = max{na}. If these two are small relative to m,
then asymptotic normality holds. If q ≡ m−mx is fixed, then we do not have normality, but
may be asymptotically approaching a sum of q iid variables. The main theorem is next. The
proof of this and the other results in this section are found in Section 13.5.

Theorem 13.1. If
(m−mx)(m−nz)

m
→∞, (13.41)

then
dA

Spear(W ,Z) − µSpear(m)√
Var[dA

Spear(W ,Z)]
−→D N(0, 1). (13.42)

Theorem 3.5 of Alvo & Yu (2014) has a more general result that allows missing data as well
as ties. Note that condition (13.41) is weaker than, but implied by,

lim sup
mx

m
< 1 and lim sup

nz

m
< 1, (13.43)

which means as long as we do not have that almost all elements are equal in the vectors, the
asymptotic normality holds.
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The condition is violated if m−mx (or m−nz) is bounded, so consider with the case that
m−mx is fixed. Let R = rank(W ) and S = rank(Z) be the midrank vectors. In order to
describe the asymptotic distribution of Spearman’s distance, we need the asymptotic distri-
bution of the Si/m’s. Let Fm be their distribution function (the Si are identically distributed),
so that

Fm(x) = P

[
Si
m

6 x

]
, x ∈ [0, 1]. (13.44)

Theorem 13.2. Suppose that for large enough m, m<x = q1 and m>x = q2 are fixed, with q =
q1 + q2, and that there exists a distribution function F on [0,1] such that Fm(x) → F(x) on points of
continuity. Then

1
m2

(
dA

Spear(W ,Z) − µSpear(m)
)
+
q

2
−→D V1 + . . . +Vq1 + (1 −Vq1+1) + · · ·+ (1 −Vq), (13.45)

where V1, . . . ,Vq are iid with distribution F.

If there are no, or few, ties in the Z, then the Vi are uniform, as in the next result.

Corollary 13.3. Suppose that for large enough m, m−mx = q is fixed, and nz/m→ 0. Then

1
m2

(
dA

Spear(W ,Z) − µSpear(m)
)
+
q

2
−→D U1 + . . . +Uq, (13.46)

where U1, . . . ,Uq are iid Uniform(0,1).

Thus the asymptotic distribution in (13.67) is called the Irwin-Hall distribution with pa-
rameter q. See Wikipedia contributors (2019a) and Marengo, Farnsworth, & Stefanic (2017)
for overviews. The latter give a nice geometric proof of the density, which is

fIH(t ; q) =
1

(q− 1)!

btc∑
k=0

(−1)k
(
q

k

)
(t− k)q−1, 0 < t < q. (13.47)

The density is symmetric about q/2, and if t > q/2, it is more efficient and more stable
numerically to calculate fIH(q− t;q).

If nz/m 6→ 0, it is unlikely one would know what the limiting distribution function is. If
m is large and q is small, then a reasonable approach is to use (13.45) but approximate the
distribution of the sum by a convolution of the empirical Fm. If the Z has most values tied at
one value, so that nz/m→ 1, then (13.45) holds, but the Vi are identically 1/2. In fact,

(m−mx)(m−nz)

m
→ 0 =⇒ P

[
1
m2

(
dA

Spear(W ,Z) − µSpear(m)
)
= cm

]
−→ 1 (13.48)

for some constant cm → 0. See the end of Section 13.5.2. Thus the statistic is not likely to be
very useful with just one observation (w, z).

The above cover most situations likely to arise, but do not address cases where m−mx →∞,m−nz →∞, and (m−mx)(m−nz)/m is bounded away from 0 and infinity. It is also open
whether the condition in (13.41) is necessary as well as sufficient for the asymptotic normality
in (13.42). It is in the case that nz/m→ 0, or if K = L = 2, as a consequence of Theorem 2.2 of
Kou & Ying (1996). Thus I suspect the condition is indeed necessary for normality.
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Figure 13.1: Comparing the exact density for Spearman’s distance with ties to the Edgeworth
approximation with L = 4 for two examples withm = 20. The top graph has n = (8, 3, 3, 3, 2, 1)
and m = (7, 4, 3, 3, 3), where the dots represent the heights of the density, and the solid line is
the Edgeworth approximation. The bottom graph has n = (5, 5, 5, 5, 5, 5) and n = (6, 6, 6, 6, 6),
where now the exact density is represented by the vertical bars.

13.4 Edgeworth and simulation approximations

The previous section guarantees asymptotic normality for most situations, but for small to
medium m, the actual fidelity of the normal (or Edgeworth modifications) to the true distri-
butions is often not very good. It appears that the larger the number of possible tables, #T,
the better the approximation. If that number is not too large (order of 1.5× 106, say), the exact
distribution can be found in under a second or so. Larger numbers of tables may still not lead
to very good normal approximations, in which case simulation is preferable. Here we try to
present some guidelines of which approach to use when.

Generally, the more unequal the entries in the patterns of ties are, the less normal the
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Figure 13.2: Comparing the median log10(errors) of the Edgeworth approximation to the dis-
tribution of the Spearman distance with ties for L=0, 2, 4, 6, 8, and 10. The horizontal axis
is the log10(#T). The panel graphs the maximum error in the density, the middle graphs the
maximum error in the distribution functions, and the bottom graphs the maximum relative
error in the p-values. See (4.54) and (4.54).
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density looks. Figure 13.1 shows the density and Edgeworth approximation for two examples
with m = 20. In the first, the patterns of ties are somewhat uneven, n = (8, 3, 3, 3, 2, 1) and
m = (7, 4, 3, 3, 3). We see that the approximation follows the general shape well, but the
density is very spiky, and in fact looks somewhat like a mixture of many normalish curves.
This approximation tends to be good for the distribution function and p-value, but has trouble
with the density because of that spikiness. We saw this behavior to a lesser extent in Figure
4.4 for the case with no ties. The second example has equal values in the patterns, with
n = (5, 5, 5, 5, 5, 5) and n = (6, 6, 6, 6, 6). Now the density is very regular, and the Edgeworth
approximation matches it almost exactly.

Another consideration arises in using the Edgeworth expansion. For the case with no
ties, we could pre-calculate the moments and cumulants based on polynomials m, as seen
in Section 4.5, hence the calculations are very fast. Here, since each set of tied rankings has
a different set of moments, we have to calculate the quantities as in (13.38) and (13.39) each
time. In particular, the τr(n) can be onerous to find for larger n and m. Thus in some cases
calculation time could be an issue.

For m 6 13, the splitting algorithm is reasonably quick. For each m between 13 and 50, we
randomly chose at about 1000 pairs (m,n), then found the exact number of corresponding
tables and exact distribution, up to 2× 108; the time the algorithm expended; the Edgeworth
approximation to the distribution for L = 0, . . . , 10; an estimate of the distribution using
500,000 simulations; and the errors of the two approximations.

First, we compare the Edgeworth approximations for the different values of L, using the
maximum error in the density, the maximum error in the distribution functions, and the
maximum relative error in the p-values. See (4.54) and (4.54). In general, the improvement
going from an even L to L+ 1 is negligible, so in Figure 13.2 we show just the even L, though
even in that case many of the lines are indistiguishable. For each graph, the data was grouped
into 25 categories depending on log10(#T), and we then found the median log10(error)’s for
each type of error by group. Table 13.1 summarizes the results by finding the median error
for 7 < log10(#T) < 8 for each L, as well as the jump (usually down) for the errors from L− 1
to L.

If we look at the error in the density, then there is a small improvement from L = 0 to 2,
then little improvement for larger L. For the distribution function, there is a large improvement
from L = 0 to 2, then substantial improvement from 2 to 4. After that, there is little change.
For the relative error in the p-value, there is substantial improvement from 0 to 2 to 4 to 6,
then small improvements to 8 and 10. Thus L = 4 or 6 seem to be reasonable choices, or 8 if
the relative p-value is of most importance.

Figure 13.3 compares the errors using either the Edgeworth or simulated estimates, on
their 5%, 50% , and 95% quantiles. Overall, for the density and distribution function, the
errors are mostly in the 10−3 to 10−4 area. In each case, the simulations are fairly constant as
the number of tables increases, while Edgeworth improves. Simulations tend to give better
approximations for the density, until we get to 108 tables, when Edgeworth is about the same.
For the distribution function, Edgeworth is better, especially if the number of tables is over 106

(and under that we can find the exact distribution). For the relative p-value, they are similar
for smaller numbers of tables, but Edgeworth becomes much better after 107 tables. It would
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Figure 13.3: Comparing the log10(errors) of the Edgeworth approximation with L = 10 to esti-
mation with 500,000 simulations. The horizontal axis is the log10(#T). The three panels graph
the errors in the density, distribution function, and relative p-values, respectively. In each plot,
the solid lines represent the 5th, 50th, and 95th percentiles for the Edgeworth approximations;
the dotted lines represent the same percentiles for the simulations.
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Density Distribution function P-value
L log10(error) Jump log10(error) Jump log10(error) Jump

0 −3.8351 −2.5103 0.5268
1 −3.8354 −0.0003 −2.5414 −0.0311 0.4867 −0.0400
2 −3.8507 −0.0153 −3.5932 −1.0518 0.0058 −0.4809
3 −3.8507 0.0000 −3.6033 −0.0101 −0.0797 −0.0855
4 −3.8507 0.0000 −3.7956 −0.1923 −0.8327 −0.7530
5 −3.8507 0.0000 −3.7978 −0.0023 −0.8510 −0.0183
6 −3.8507 0.0000 −3.8018 −0.0040 −1.2980 −0.4470
7 −3.8507 0.0000 −3.8019 −0.0001 −1.2867 0.0113
8 −3.8507 0.0000 −3.8022 −0.0003 −1.3713 −0.0846
9 −3.8507 0.0000 −3.8023 −0.0001 −1.3715 −0.0002

10 −3.8507 0.0000 −3.8023 0.0000 −1.3909 −0.0193

Simulations −4.0463 −2.9373 −0.2222

Table 13.1: The median log10(errors) when 107 < #T < 108 for the Edgeworth approximation
(L=0, . . . , 10), and for simulations with 500,000 replications. The “Jump” columns show the
difference log errors between L and L+ 1.

be reasonable to use simulations if #T 6 107, and Edgeworth otherwise. See also the last line
in Table 13.1. Of course, the simulations can be improved by increasing their number.

13.5 Proofs of asymptotic results

13.5.1 Asymptotic normality

To prove Theorem 13.1, we use Theorem 4 of Hoeffding (1951). Let r = rank(w) and s =
rank(z) be the midrank vectors. Then Hoeffding shows that the asymptotic normality in
(13.42) holds if

h(r)h(s)

m
→∞, (13.49)

where

h(r) =

∑
(ri − ν)

2

max{(ri − ν)2}
, ν =

m+ 1
2

. (13.50)

We will show that h(r) and m−mx are asymptotically equivalent, so that (13.41) is equivalent
to (13.49).

Consider the maximum term. Without loss of generality, we can take r = r(o) of (13.4), so
that the elements are in nondecreasing order. Since ν is the mean of the elements of r, the
maximum of (ri − ν)2 must occur at one of the extremes, i = 1 or m. Now r1 = (m1 + 1)/2
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and rm = (m−mK) + (mK + 1)/2, so that

max{(ri − ν)2} =
1
4

max{(m−m1)
2, (m−mK)

2} =
1
4
(m− min{m1,mK})

2. (13.51)

The smallest ma can be is 1, and the largest the minimum of m1 and mL can be is when they
are both m/2 ((m± 1)/2 if m is odd), hence

m2

16
6 max{(ri − ν)2} <

m2

4
. (13.52)

Using the conditional expectation representation in (12.25) for ri, we have

Var[E[Xi |W ]] =

∑
(ri − ν)

2

m
. (13.53)

Also, since the variance of a discrete uniform on {c+ 1, . . . , c+n} is (n2 − 1)/12, from (12.17),

Var[Xi] =
m2 − 1

12
and Var[Xi |W = w] =

m2
wi

− 1
12

(13.54)

since ma = u
(w)
a − l

(w)
a + 1. Using the decomposition of variance by conditioning, write

Var[Xi] = Var[E[Xi |W ]] + E[Var[Xi |W ]], (13.55)

so that ∑
(ri − ν)

2

m
=
m2 − 1

12
−

K∑
a=1

ma

m

m2
a − 1
12

, (13.56)

hence
m∑
i=1

(ri − ν)
2 =

m3 −
∑
m3
a

12
. (13.57)

Now
m3
x 6
∑

m3
a 6
∑

mam
2
x = mm

2
x, (13.58)

so that

m3 −
∑

m3
a 6 m3 −m3

x = (m−mx)(m
2 +mmx +m

2
x) 6 3m2(m−mx), and

m3 −
∑

m3
a > m3 −mm2

x = m(m−mx)(m+mx) > m
2(m−mx). (13.59)

Together with (13.52) and (13.57), by (13.50), we have

(m−mx)

3
6 h(r) 6 4(m−mx), (13.60)

and a similar formula for s. Thus condition (13.41) holds if (and only if) (13.49) does, which
verifies the theorem.
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13.5.2 Asymptotics with mx ≈ m
Here we have W with pattern of ties such that q = m −mx is fixed. The Y may or may
not have ties, but if Z has pattern (n1, . . . ,nL). Let R = rank(W ) and S = rank(Z) be the
midrank vectors. As in (13.44), let Fm be the distribution function of the Si/m, which are
identically distributed. The next lemma shows that if Fm has a limit, any finite set of Si/m’s
are asymptotically independent as well.

Lemma 13.4. Suppose there exists a distribution function F on [0,1] such that Fm(x)→ F(x) on points
of continuity of F. Then if q is fixed, as m→∞,

1
m

(S1, . . . ,Sq) −→D (V1, . . . ,Vq), (13.61)

where V1, . . . ,Vq are iid with distribution function F.

Proof. Similar to (13.4), let u1 < u2 < · · · < uL be the possible values of the Si, so that the
ordered values of any realization of S is

s(o) = (u1, . . . ,u1,u2, . . . ,u2, . . . ,uL, . . . ,uL) , ul = n<l +
nl + 1

2
, (13.62)

where there are nl of the ul’s in the s(o). See (12.14). The distribution function Fm can be
thought of as the empirical distribution function of the s(o)i /m’s. Thus we have

Fm(x) = #{i | s(o)i 6 mx} =
n(mx)

m
, where n(w) =

∑
k |uk6w

nk. (13.63)

This distribution is a discrete one, where the pmf is fm(ul/m) = nl/m. Take 0 6 x1 6 x2 6
· · · 6 xq 6 1. Then

P

[
S1

m
6 x1, · · · ,

Sq

m
6 xq

]
=
n(mx1)

m

n(mx2) − 1
m− 1

· · ·
n(mxq) − q+ 1
m− q+ 1

. (13.64)

To see (13.64), note that there are n(mx1) ways to choose one of the s(o)i ’s such that ms(o)i 6 x1.
Since x1 6 x2, there are only n(mx2) − 1 of the s(o)i ’s left such that ms(o)i 6 x2, out of m− 1
total. We continue until the qth choice. Thus from (13.63), since q is fixed,

P

[
S1

m
6 x1, · · · ,

Sq

m
6 xq

]
=

mq

(m)q
Fm(x1) · · · Fm(xq) +O

(
1
m

)
. (13.65)

Now let m → ∞. If the xi’s are continuity points of F, since we have assumed that Fm(xi) →
F(xi), we have

P

[
S1

m
6 x1, · · · ,

Sq

m
6 xq

]
−→ F(x1) · · · F(xq). (13.66)

Finally, since the distribution of S is permutation-invariant, (13.66) holds for any order of the
xi’s, hence (13.61) follows from (13.66).
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We apply the lemma to prove the main asymptotic result for q fixed.

Proof of Theorem 13.2. Fix W = w with the wi’s nondecreasing, and set rank(w) = r =
(t1, . . . , t1, . . . , tK, . . . , tK). Thus there are mk elements equal to tk, and tk = m<k + (mk +
1)/2,k = 1, . . . ,K. Also, let S = rank(Z). From (13.1) and (13.3), we can obtain

dA
Spear(w, z) − µSpear(m) = −2

m∑
i=1

(ri − ν)si. (13.67)

Writing the ri in terms of tk, and singling out the k = x term, the crossproduct term can be
written

m∑
i=1

(ri − ν)si =

K∑
k=1

(tk − ν)

m6k∑
i=m<k+1

si

=
∑
k 6=x

(tk − ν)

m6k∑
i=m<k+1

si + (tx − ν)

m(m+ 1)
2

−

m<x∑
i=1

si −

m∑
i=m6x+1

si


=
∑
k 6=x

(tk − tx)

m6k∑
i=m<k+1

si + (tx − ν)
m(m+ 1)

2
. (13.68)

Now
tk − tx = m<k −m<x +

mk −mx

2
. (13.69)

If k < x, all the terms in (13.69) are bounded except for mx, which has coefficient −1/2. If
k > x, then m<k equals mx plus some bounded terms, hence mx has coefficent 1/2 in the
difference. Thus as m→∞, mx/m→ 1, and

tk − tx
m

=

{
−1

2 +O
( 1
m

)
if k < x,

1
2 +O

( 1
m

)
if k > x.

(13.70)

Also, tx = q1 +(m−q+ 1)/2, so that tx−ν = (q1 −q2)/2. (Recall thatm<x = q1 andm>x = q2
are fixed.) Thus

1
m2

(
m∑
i=1

(ri − ν)Si

)
= −

1
2

q1∑
i=1

Si
m

+
1
2

m∑
i=m−q2+1

Si
m

+
q1 − q2

4
+O

(
1
m

)
(13.71)

Now let m→∞. Then by (13.61),

1
m

(S1, . . . ,Sq1 ,Sm−q1+1, . . . ,Sm) −→D (V1, . . . ,Vq), (13.72)

where the V1, . . . ,Vq are iid F. Rewinding through (13.71) and(13.67), we have

1
m2

(
dA

Spear(w,Z) − µSpear(m)
)
−→D V1 + · · ·+ Vq1 − (Vq1+1 + · · ·+ Vq) +

q2 − q1

2
. (13.73)

Now add q/2 to both sides to obtain (13.45).
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Next we specialize to the case where there are not many ties in the Z.

Proof of Corollary 13.3. Now we have that nz/m → 0 holds as well as q being fixed. For given
x ∈ [0, 1], let l be the index such that tl 6 mx < tl+1, where t0 = 0 and tL+1 = m+ 1. Then
n(mx) = n6l. From (13.63), we can write

n6l +
−nl + 1

2
6 mx < n6l +

nl+1 + 1
2

, (13.74)

(where nL+1 = 0), hence since Fm(x) = n6l/m,

−nl + 1
2m

6 x− Fm(x) <
nl+1 + 1

2m
. (13.75)

That is, |Fm(x) − x| 6 (nz + 1)/(2m) → 0, so that F(x) = x, the Uniform(0,1) distribution
function. Thus in Theorem 13.2, the Vi are Uniform(0,1), which means so are the 1 − Vi, and
no matter what q1 and q2 are, as long as they sum to q, the asymptotic distribution in (13.45)
is the sum of q iid Uniform(0,1)’s. Thus the corollary follows.

Finally, suppose both q = m−mx and p = m−nz are small relative to m, in that pq/m→
0. We wish to show (13.48), that the distribution of Spearman’s distance approaches placing
all its mass at one point. Let r and s be the midrank vectors, so that r has mk elements equal
to tk, and s has nl values of ul. Thus tx and uz are the most common values in r and s,
respectively. The most common value of the crossproduct

∑
risi occurs if the pair of vectors

is in the following set:

Am = {(r, s) | for each i, ri = tx or si = uz (or both)}. (13.76)

Then if (r, s) ∈ Am,

(r, s) ∈ Am =⇒
m∑
i=1

(ri − ν)(si − ν)

= (tx − ν)
∑

i | si 6=uz

(si − ν) + (uz − ν)
∑

i | ri 6=tx

(ri − ν) + (tx − ν)(uz − ν) #{i | ri = tx & si = uz}

= −(tx − ν)(uz − v)nz − (uz − ν)(tx − ν)mx + (tx − ν)(uz − ν)(mx +nz −m)

= −m(tx − ν)(uz − ν). (13.77)

The third line follows from the second by noting that
∑
i(ri − ν) = 0 =

∑
kmk(tk − ν) (and

similarly for s), and the final set has m− (m−mx) − (m−nz) values.
Now fix r. Then if p+q < m, which happens for large enough m since pq/m→ 0 implies

(p+ q)/m→ 0,

P[(r,Z) ∈ Am] =
(mx)m−nz

(m)m−nz

=
(m− p)!(m− q)!
(m− p− q)!m!

. (13.78)

To see (13.78), note that we need to match each ri 6= uz with zi = tx. Thus we have to count
the number of ways to choose m− nz items, without replacement, from a pool of mx. Using
Stirling’s approximation,

log(k!) = (k+ 1
2) log(k) − k+O

(
1
k

)
, (13.79)
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we can show that

log
(
(m− p)!(m− q)!
(m− p− q)!m!

)
= (m− p) log

(
1 −

p

m

)
+ (m− q) log

(
1 −

q

m

)
− (m− p− q) log

(
1 −

p+ q

m

)
+

1
2

log
(
(m− p)(m− q)

m(m− p− q)

)
+O

(
1
m

)
. (13.80)

The big O term holds since (p + q)/m → 0 implies that m − p,m − q, and m − p − q are
asymptotically equivalent to m. Those convergences also show that the second to last term in
(13.81) approaches 0. We expand log(1− x) for the other three terms, so that their sum equals

−(m− p)

∞∑
k=1

1
k

( p
m

)k
− (m− q)

∞∑
k=1

1
k

( q
m

)k
+ (m− p− q)

∞∑
k=1

1
k

(
p+ q

m

)k
=

∞∑
k=1

1
k

(p+ q)k − pk − qk

mk−1 −

∞∑
k=1

1
k

(p+ q)k+1 − pk+1 − qk+1

mk

= −

∞∑
k=1

1
k(k+ 1)

(p+ q)k+1 − pk+1 − qk+1

mk
. (13.81)

Using the binomial theorem, we have

(p+ q)k+1 − pk+1 − qk+1 =

k∑
l=1

(
k+ 1
l

)
plqk+1−l = pq

k∑
l=1

(
k

l

)
pl−1qk−l

6 pq(p+ q)k−12k+1, (13.82)

where in the last step, we bound p and q by p+ q, and add the l = 0 and l = k+ 1 terms to
the sum of the binomial coefficients. Thus

0 > −

∞∑
k=1

1
k(k+ 1)

(p+ q)k+1 − pk+1 − qk+1

mk
> −4

pq

m

∞∑
k=1

1
k(k+ 1)

(
2(p+ q)
m

)k−1

. (13.83)

For any 0 < x < 1, eventually 2(p+ q)/m 6 x, in which case the final summation in (13.83)
converges. Now the assumption that pq/m→ 0 implies that the expression in (13.81) goes to
zero, hence by (13.81) and (13.78), P[(r,Z) ∈ Am]→ 1, hence via (13.77),

P

[
1
m2

(
dSpear(w,Z) − µSpear(m)

)
= cm

]
−→ 1, (13.84)

where

cm = 2
(tx − ν)(uz − ν)

m
=

1
m

(
m<x −

p

2

)(
n<z −

q

2

)
. (13.85)

Since 0 6 m<x 6 p and 0 6 n<z 6 q, |cm| 6 pq/(4m), which also goes to zero by our
assumption. Thus (13.48) follows.
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13.5.3 Proof of Irwin-Hall density

Here we use the approach given in Marengo et al. (2017) to verify the Irwin-Hall density in
(14.24). Let T = U1 + · · ·+Uq, where the Ui are iid Uniform(0,1). The space of T is (0,q). Since
(U1, . . . ,Uq) is distributed over the unit q-dimensional hypercube, the distribution function
can be expressed as

FIH(t) = Volume{(u1, . . . ,uq) | 0 < ui < 1, i = 1, . . . ,q, and u1 + · · ·+ uq 6 t}. (13.86)

If we remove the constraint that the ui < 1 in the set in (13.86), the resulting set has volume
tq/q!. To find the distribution function FIH, we start with the volume of this expanded set,
then subtract off the volume of the parts where one or more ui > 1. That is,

FIH(t) = Volume(A(t)) − Volume(B1(s)∪B2(t)∪ · · · ∪Bq(t)), (13.87)

where

A(t) = {(u1, . . . ,uq) | 0 < ui, i = 1, . . . ,q, and u1 + · · ·+ uq 6 t} and
Bj(t) = {(u1, . . . ,uq) ∈ A(t) |uj > 1}, j = 1, . . . ,q. (13.88)

We find the volume of the union in (13.87) using the union-intersection principle. By symme-
try, the volume of an intersection of j of the Bi(t)’s depends just on the number j, and since
there are

(
q
j

)
possible sets of j of them, we have

Volume(B1(t)∪B2(t)∪ · · · ∪Bq(t)) =
q∑
j=1

(−1)j+1
(
q

j

)
Volume(B1(t)∩ · · · ∩Bj(t)). (13.89)

Now take t ∈ (0,q) and let k be the integer such that k 6 t < k+ 1. Note that at most k of
the ui’s can exceed 1 in order that the sum doesn’t exceed t. For 1 6 j 6 k, we can write

B1(t)∩ · · · ∩Bj(t) = {(u1, . . . ,uq) | 1 < ui, i = 1, . . . , j; 0 < ui, i = j+ 1, . . . ,q;
and u1 + · · ·+ uq 6 t}. (13.90)

In the final set, let vi = ui − 1 for i = 1, . . . , j, and vi = ui for i = j+ 1, . . . ,q. Then all vi > 0,
and

u1 + · · ·+ uq 6 t ⇐⇒ v1 + · · ·+ vq 6 t− j. (13.91)

Thus the right-hand side of (13.90) is the same as A(t− j) with the ui’s replaced by vi’s. Hence

Volume(B1(t)∩ · · · ∩Bj(t)) = Volume(A(t− j)) =
(t− j)q

q!
, (13.92)

and by (13.87) and (13.89), for k = 0, . . . ,q− 1,

FIH(t) =

k∑
j=0

(−1)j
(
q

j

)
(t− j)q

q!
for k 6 t < k+ 1. (13.93)

The density in (14.24) is found by differentiating, at least for t not equalling an integer, and
using the floor function (k = btc).
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Chapter 14

Tied rankings in just one variable: Kendall

In this chapter we treat Kendall’s distance when there are ties in just one of the variables.
We assume the second variable Y has no ties, and treat the first variable W as fixed at w.
In this case, the Kendall distance adjusted for ties is equal, modulo an additive constant,
to the Mann-Whitney/Wilcoxon (MWW) statistic if w has just two distinct values, and the
Jonckheere-Terpstra (JT) statistic for arbitrary w. See Wilcoxon (1945) and Mann & Whitney
(1947) for the former, and Terpstra (1952) and Jonckheere (1954) for the latter. Most books on
nonparametric methods cover these procedures. Because the analysis in this case is so much
easier to deal with than the case with ties in both variables, and the MWW and JT statistics
are of interest in their own rights, we split the analysis into two chapters. Chapter 16 handles
the more general case.

A special case of the JT statistic is what Silverberg (1980) calls a q-permutation, which is a
tied ranking in which the top q items are ranked from 1 to q, but all other items are tied at
q+ 1. This type of ranking arises quite frequently, e.g., when people are asked to rank their
top ten movies out of possibly hundreds. The exact distribution is easier to find than that for
the general JT statisistic.

In Section 14.1, we present the above statistics, and their relationship to Kendall’s distance
with ties. In Section 14.2 we give fairly simple formulas for the cumulants. An algorithm for
the exact distribution for medium m is given in Section 14.3. Section 14.4 contains results for
asymptotic normality, and another approximation based on the sum of independent uniforms
for special cases. Proofs are in Section ??. We apply the asymptotic approximations in Section
14.5.

14.1 The Mann-Whitney/Wilcoxon and Jonckheere-Terpstra
statistics

The Mann-Whitney statistic (Mann & Whitney, 1947) is a nonparametric statistic used to test
the equality of two populations based on independent random samples of a single variable
from each population. The statistic counts the number of times a value in the first sample ex-
ceeds one from the second, at least if there are no ties. Let y be the vector of ranks for the com-
bined samples, where the first m1 components are the ranks for the first sample, and the re-
mainingm2 components are the ranks of the second sample. If we setw = (1, 1, . . . , 1, 2, . . . , 2),
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where there are m1 1’s and m2 2’s, then the Mann-Whitney statistic is exactly the Kendall dis-
tance (without adjustment for ties) given in (1.4) between w and y:

dKen(w,y) =
∑

16i<j6m

I[(wi −wj)(yi − yj) < 0] =
m1∑
i=1

m1+m2∑
j=m1+1

I[yi > yj]

≡ dMWW(Y1,Y2); Yj = {yi |wi = j}. (14.1)

The Wilcoxon (1945) statistic is based on the sum of the ranks in the first sample, y1 + · · ·+ym1 .
It is well-known to be equivalent to the Mann-Whitney statistic, since it can be written

dKen(w,y) =
m1∑
i=1

m∑
j=m1+1

I[yi > yj]

=

m1∑
i=1

m∑
j=1

I[yi > yj] −

m1∑
i=1

m1∑
j=1

I[yi > yj]

=

m1∑
i=1

(yi − 1) −
(
m1

2

)

=

m1∑
i=1

yi −
m1(m1 + 1)

2
. (14.2)

We will refer to this statistic as the Mann-Whitney/Wilcoxon (MWW) statistic. It is also
equivalent to Spearman’s distance adjusted for ties in the first variable as in (13.1), so that
with the ri’s being the midranks for the wi’s,

dA
Spear(w,y) =

2m(m+ 1)(2m+ 1)
3

− 2
m∑
i=1

riyi

=
2m(m+ 1)(2m+ 1)

3
− 2

m1 + 1
2

m1∑
i−1

yi +

(
m1 +

m2 + 1
2

) m1+m2∑
i=m1+1

yi


=
m(m+ 1)

6
(1 + 5m− 3m1) +m

m1∑
i=1

yi. (14.3)

The Jonckheere-Terpstra (JT) statistic is a similar statistic that compares K > 2 populations,
looking to see if there is a trend in the variable over the population indices. Here we have
w = (1, . . . , 1, 2, . . . , 2, . . . ,K, . . . ,K), and define the JT statistic by

dKen(w,y) = dJT(Y1, . . . ,YK) =
K−1∑
a=1

∑
i∈Ya

m∑
j=ma+1

I[yi > yj]

=

K−1∑
a=1

Wa, where Wa = dMWW(Ya,Ya+1 ∪ · · · ∪ YK). (14.4)
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In (14.1) and (14.4), we have not adjusted the distance for ties as in (12.35). Since there are
no ties in the y, the adjustment as in (12.36) reduces to

dA
Ken(w,y) = dJT(Y1, . . . ,YK) +

∑
m2
a −m

4
. (14.5)

14.2 Moments and cumulants
The results here were originally obtained by Jonckheere (1954). We start by showing the
independence of the MWW statistic and the ranks of the Yi’s within each group, which is
Theorem 1 of Terpstra (1952).

Lemma 14.1. Suppose Y ∼ Uniform(Pm), m = m1 +m2, and let Y1 = {Y1, . . . ,Ym1} and Y2 =
{Ym1+1, . . . ,Ym}. Then the three quantities

Y (1) ≡ rank(Y1, . . . ,Ym1),Y
(2) ≡ rank(Ym1+1, . . . ,Ym), and dMWW(Y1,Y2) (14.6)

are independent, where Y (1) ∼ Uniform(Pm1) and Y (2) ∼ Uniform(Pm2).

The proof is based on the observation that the order of the elements within the two subsets
Y1 and Y2 are independent since the subsets are disjoint, and also independent of the MWW
statistic since the latter only compares the values between the two subsets.

The lemma can be easily extended to several groups, where for the situation in (14.4), we
have the 2L− 1 quantities

W1,W2, . . . ,WK−1, and rank(Y (1)), rank(Y (2)), . . . , rank(Y (K)) are independent. (14.7)

This result follows by first using the lemma to show that W1, rank(Y (1)), and rank(Y (2), . . . ,
Y (K)) are independent. Then apply the lemma to that last vector to show that W2, rank(Y (2)),
and rank(Y (3), . . . ,Y (K))) are independent, and still independent of W1 and rank(Y (1)). Con-
tinuing, we have (14.7).

Equation (14.7) can be used to find the cumulants for the JT statistic. Letting ek = (1, . . . ,k),
write

dKen(em,Y ) =
∑

16i<j6m

I[Yi > Yj]

=

K−1∑
a=1

ma∑
i=1

m∑
j=ma+1

I[yi > yj] +
∑

16i<j6m1

I[Yi > Yj]

+
∑

m1+16i<j6m1+m2

I[Yi > Yj] + · · ·+
∑

m1+···+mK−1+16i<j6m

I[Yi > Yj]

= dJT(Y1, . . . ,YK) + dKen(em1 ,Y (1)) + dKen(em2 ,Y (2)) + · · ·+ dKen(emK ,Y (K)).
(14.8)

By Lemma 14.1, the K+1 terms in the final expression are independent. Since cumulants
are linear, the nth cumulant of the (first) left-hand side of (14.8) equals the sum of the nth
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cumulants of the independent terms. Let κKen
n (k) be the nth cumulant for Kendall’s distance

based on Y of length k. This cumulant is given in (6.13). Then we have that the nth cumulant
of the JT statistic, with group sizes m1, . . . ,mK, is

κJT
n (m1, . . . ,mK) = κ

Ken
n (m) −

K∑
a=1

κKen
n (ma). (14.9)

In particular, from (1.10),

E[dJT(Y1, . . . ,YK)] =
m(m+ 1)

4
−

K∑
a=1

ma(ma + 1)
4

=
m2 −

∑K
a=1m

2
a

4
, (14.10)

and

Var[dJT(Y1, . . . ,YK)] =
m(m− 1)(2m+ 5)

72
−

K∑
a=1

ma(ma − 1)(2ma + 5)
72

=
m3 −

∑K
a=1m

3
a

36
+
m2 −

∑K
a=1m

2
a

24
. (14.11)

For the MWW statistic, we simplify to

E[dMWW(Y1,Y2)] =
m1m2

2
and Var[dMWW(Y1,Y2)] =

m1m2(m+ 1)
12

. (14.12)

14.3 Exact distribution
We start with the recursive algorithm from Gibbons & Chakraborti (2010, page 265) for finding
the exact distribution of the MWW statistic. It is based on the algorithm in Terpstra (1953) for
the JT statistic. Fixing m1 and m2, the MWW statistic in (14.1) can be written

dKen(w,y) = dMWW(Y1,Y2) = #{yi > yj |yi ∈ Y1,y2 ∈ Y2}. (14.13)

The possible values range from 0 to m1m2. There are
(
m
m1

)
ways to allocate m1 of the yi’s to

Y1, and the rest to Y2, hence the distribution of the MWW statistic is

P[dMWW(Y1,Y2) = u] =
c(u;m1,m2)(

m
m1

) , u = 0, . . . ,m1m2, (14.14)

where

c(u;m1,m2) = #{Ways to allocate m1 of the yi’s to Y1 | #{yi > yj |yi ∈ Y1,yj ∈ Y2} = u}.
(14.15)

For each such allocation, the yk that equals m is either in Y1 or Y2. Removing that element
will be an allocation of 1, . . . ,m − 1, for which we can find the statistic as follows, where
dMWW(Y1,Y2) = u:

m ∈ Y1 ⇒ dMWW(Y1 − {m},Y2) = u−m2;
m ∈ Y2 ⇒ dMWW(Y1,Y2 − {m}) = u

(14.16)
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The first line holds because m is larger than anything in Y2, hence contributes m2 to the
statistic. (Note that if u < m2, then m cannot be in Y1.) For the second line, it contributes
nothing since everything in Y1 is smaller than m. Now any configuration of m yi’s that has
statistic value u is associated with (possibly) two configurations of m− 1 yi’s, as in (14.16).
Thus

c(u;m1,m2) = c(u−m2;m1 − 1,m2) + c(u;m1,m2 − 1). (14.17)

Then the function c for any m1,m2 can be found iteratively from those with smaller mi’s. We
can start the process with one of the mi’s being one, where

c(u; 1,m2) = 1,u = 0, . . . ,m2 and c(u;m1, 1) = 1,u = 0, . . . ,m1. (14.18)

Also, c(u;m1,m2) = 0 if u < 0.
For the JT statistic (14.4), we first find the exact distribution of all the component Wa’s,

which by Lemma 14.1 are independent. Now the convolution of those L − 1 distributions
yields the exact distribution of the JT statistic.

Turn to the q-permutations. Using (14.6), we can write

dKen(w,Y ) =

q∑
j=1

Vj where Vj =

m∑
i=j+1

I[Yi < Yj]. (14.19)

This decomposition is equivalent to that in (6.4), but with the summations on i and j switched.
Then the V1, . . . ,Vq are independent, with

Vj ∼ Uniform{0, . . . ,m− j}. (14.20)

Thus we can perform a straightforward convolution of the q discrete uniforms, just as we did
for Kendall’s distance without ties in Section 6.3, though we need fewer terms.

14.4 Asymptotic distributions
Here we find conditions for the JT statistic to have a limit, either normal or a sum of uniforms.
Section 14.5 evaluates the resulting approximations.

We start with conditions for asymptotic normality. Let

D
(m)
JT = dJT(Y1, . . . ,YK). (14.21)

The components ma in m, and K, depend on m, though the notation won’t reflect the depen-
dence. Next is the main result. It is a bit more general than the results in Terpstra (1952) and
Jonckheere (1954), in that these authors seem to assume K is bounded and lim supmx/m < 1,
where mx = max{ma}. The result follows from the more general Theorem 15.1.

Theorem 14.2. If as m→∞ we have m−mx →∞, then

D
(m)
JT − E[D

(m)
JT ]√

Var[D
(m)
JT ]

−→D N(0, 1). (14.22)
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If the condition m −mx → ∞ fails, we have the following alternative result, which is
shown to be a consequence of Theorem 15.1 at the end of Section 15.2.

Theorem 14.3. Suppose that for some finite q, m−mx → q as m→∞. Then

D
(m)
JT

m
−→D U1 + · · ·+Uq, (14.23)

where U1, . . . ,Uq are independent Uniform(0,1) random variables.

If m −mx 6→ ∞, then there must exist a finite q such that m −mx → q, at least on a
subsequence. Theorem 14.3 shows (14.23) on that subsequence, hence either that limit holds
for the entire sequence, or the sequence does not have a limit. Thus the condition in Theorem
14.2 is also necessary for asymptotic normality.

The distribution of a sum of q independent Uniform(0,1)’s is called the Irwin-Hall distri-
bution, with parameter q. See Wikipedia contributors (2019a) and Marengo et al. (2017) for
overviews. The latter give a nice geometric proof of the density, which is

fIH(t ; q) =
1

(q− 1)!

btc∑
k=0

(−1)k
(
q

k

)
(t− k)q−1, 0 < t < q. (14.24)

We sketch their proof in Section 13.5.3. The density is symmetric about q/2, and if t > q/2, it
is more efficient and more stable numerically to calculate fIH(q− t;q).

14.5 Edgeworth and Irwin-Hall approximations
The exact algorithm for Kendall’s distance with no ties given in Section 6.3 is reasonably fast
for m up to about 1325. The related algorithm for q-permutations in Section 14.3 is also fast
for m up to 1200, or if q 6 950000/m+ 150. The algorithm for more general patterns of ties
seems to be slower. In the MWW case, so that K = 2, it appears that it is fine if m1m2 6 25000,
or for the general JT case if m∗(m−m∗) 6 25000, where m∗ = max{m1, . . . ,mK,m/2}.

If the ma’s are too large for the exact algorithms to be feasible, either the Edgeworth or
Irwin-Hall approximations are usually very accurate. The latter are good when the mx =
max{m1, . . . ,mK} is close to m. Figure 14.1 graphs the log of the errors for the Edgeworth
approximation with L = 10 and the Irwin-Hall approximation for the MWW statistic, where
m1 = 2, . . . , 10 and m2 = 100, 200, . . . , 500. (If m1 = 1, then the distribution is exactly discrete
uniform from 0 to m2.) For Edgeworth, the approximations generally improve as m1 and m2
increase, and are excellent if m1 = 10, being about 10−8, 10−7, and 10−3 for the maximum
error in density, distribution function, and relative p-value, respectively, as given in (4.54) and
(4.54). For larger m1 and m2, the approximation is even better. The errors in the Irwin-Hall
approximation tends to be relatively flat, and are better than Edgeworth only if m1 6 3 or 4,
or maybe 6 if the relative p-value is of most import. Note that for the situations in these plots,
the exact distribution is easy to find.

The table in (14.25) gives the cutoff points for m1 when the better approximation for the
MWW statistic switches from Irwin-Hall to Edgeworth, and m2 > 500. Values of m1 less than
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Figure 14.1: Comparing the log10(errors) of the Edgeworth with L = 10 and Irwin-Hall ap-
proximations for MWW statistics with m = (m1,m2), where m1 is small. The horizontal axis
is m1, and the vertical is the log of the errors. The different lines represent different m2. In
each graph, the relatively horizontal lines denote the errors for the Irwin-Hall approxima-
tion, and the lines decreasing substantially denote those for the Edgeworth approximation.
The three panels graph the errors in the density, distribution function, and relative p-values,
respectively.
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or equal to the entry favor the former, and those greater than favor the latter. A reasonable
guideline is to use Irwin-Hall if m1 6 d(4/3) log10(m2)e, and Edgeworth otherwise.

m2 → 500 1000 2000 3000 4000 5000 7500 10000

Density 3 4 4 4 4 4 5 5
Distribution function 3 3 3 4 4 4 4 4
Relative p-value 5 6 6 6 7 7 7 7

(14.25)

The MWW statistic is generally a worst-case, in that these approximations improve as the
groups in the m are further subdivided, so that the JT statistic with m = (10, 100, 100, 100)
has better approximations than the MW statistic with m = (10, 300).
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Tied rankings in both variables: Kendall

This chapter treats Kendall’s distance when there are ties in both variables, where as in (12.35),

dA
Ken(w, z) =

∑∑
16j<i6m

(
I[(wi −wj)(zi − zj) < 0] + 1

2 I[(wi −wj)(zi − zj) = 0]
)

. (15.1)

The results proceed similar to those in Chapter 13 for Spearman’s distance. Section 15.1
relates the distance to the contingency tables in Section 13.1.2, so that we can iterate over
all the tables (if there are not too many) to find the exact distribution. Section 15.2 describes
conditions under which the distance is asymptotically normal, which are verified in Section ??.
We apply the normal and Edgeworth approximations to the distribution in Section 15.3, and
compare them to using simulations. The Edgeworth approximations need higher moments,
but so far we have only been able to find analytic expressions for the moments up to order
four, hence we can use Edgeworth expansions up to L = 2. Their (tedious) derivations are in
Section 15.4.

15.1 Exact distribution: Contingency tables

Here we use contingency tables as for Spearman’s distance in Section 13.1.2, as in Brown
(1988). For tied rankings w and z, let T (w, z) be the K× L contingency table as in (13.16), so
that tab = Tab(w, z) = #{i |wi = a, zi = b}. We can then find the number of concordances and
discordances from the table:

C ≡
∑∑
16j<i6m

I[(wi −wj)(zi − zj) > 0] =
∑
· · ·
∑

16a1<a26K,16b1<b26L

ta1b1ta2b2 ,

D ≡
∑∑
16j<i6m

I[(wi −wj)(zi − zj) < 0] =
∑
· · ·
∑

16a1<a26K,16b1<b26L

ta1b2ta2b1 . (15.2)

Since

C+D+
∑∑
16j<i6m

I[(wi −wj)(zi − zj) = 0] =
(
m

2

)
, (15.3)

179
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from (12.35) we have

dA
Ken(w, z) = D+ 1

2 I[(wi −wj)(zi − zj) = 0]

=
1
2

(
D−C+

(
m

2

))
. (15.4)

To find the exact distribution for Kendall’s distance, we can run through all the possible tables
and sum up their probabilities, as for Spearman in (13.20).

15.2 Asymptotic distributions
Alvo & Yu (2014) prove the asymptotic normality of Kendall’s distance with ties and missing
values by showing it is close enough to Spearman’s distance to borrow its asymptotics. We
again have m and n being the pattern of ties for W and Z, respectively, and set mx =
max{ma} and nz = max{na}. As in (13.44), let Fm be the distribution function for Si/m, where
S = rank(Z), Let µKen(m) and σ2

Ken(m,n) denote the mean and variance of dA
Ken(W ,Z).

Then we have the following.

Theorem 15.1. Suppose that m→∞. Then

(m−mx)(m−nz)

m
→∞ =⇒

dA
Ken(W ,Z) − µKen(m)

σKen(m,n)
−→D N(0, 1). (15.5)

On the other hand, if q1 = m<x and q2 = m>x are fixed, with q = q1 + q2, and Fm(x) → F(x) on
points of continuity, then

1
m

(
dA

Ken(w,Z) − µKen(m)
)
+
q

2
−→D V1 + . . . + Vq1 + (1 − Vq1+1) + · · ·+ (1 − Vq), (15.6)

where the Vi are iid with distribution given by F.

If there are no ties in Y , then we have the Jonckheere-Terpstra statistic as in (14.4). In this
case, nz = 1, hence the condition in (15.5) for asymptotic normality is that m −mx → ∞,
proving Theorem 14.2.

Next, suppose q1 = m<x and q2 = m>x are fixed. Using (14.5), and (1.10) for the mean,

dA
Ken(w,y) − µKen(m) = dJT(Y1, . . . ,YK) +

∑
m2
a −m

4
−
m(m− 1)

4

= dJT(Y1, . . . ,YK) −
m2 −

∑
m2
a

4
. (15.7)

Now
m2 −

∑
m2
a = m2 −m2

x −
∑
a 6=x

m2
a = (m+mx)q−

∑
a 6=x

m2
a. (15.8)

With q being fixed, mx/m→ 1 and
∑
a6=xm

2
a is bounded. Thus (15.6) and (15.8) show that

1
m
dJT(Y1, . . . ,YK) −→D V1 + . . . + Vq1 + (1 − Vq1+1) + · · ·+ (1 − Vq). (15.9)
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Since the na = 1, the second part of Lemma 13.4 shows that the Vi are Uniform(0,1), hence so
are the 1 − Vi. Note also that the asymptotic distribution depends on q1 and q2 only through
their sum q, hence need not be fixed as long as q is. Thus we have Theorem 14.3.

To prove Theorem 15.1, we follow Alvo and Yu’s Theorem 3.4, we starting with the fol-
lowing lemma, then apply it to show that the results for Spearman imply the results in the
theorem.

Lemma 15.2. Let cm = m+ 1 −
√
m+ 1. Then

E

(dA
Spear(w,Z) − µSpear(m)

cm
− (dA

Ken(w,Z) − µKen(m))

)2
 6

m(m−mx)

12
. (15.10)

Proof of Lemma 15.2. We first find the covariance of the two distances in the Jonckheere-Terpstra
case, i.e., W has ties given by m, and Y is without ties. We fix W = w, and set

rank(w) = r = (t1, . . . , t1, . . . , tK, . . . , tK), where ta = m<a +
ma + 1

2
, (15.11)

and there are ma elements equal to ta in r. Then from (13.67),

Cov[dA
Spear(w,Y ),dA

Ken(w,Y )] = −2Cov[
m∑
i=1

riYi,dA
Ken(w,Y )]. (15.12)

Using the decomposition in (14.8) for Kendall, we have

Cov[

m∑
i=1

riYi,dA
Ken(w,Y )] = Cov[

m∑
i=1

riYi,dKen(em,Y )] −

K∑
a=1

Cov[

m∑
i=1

riYi,dKen(ema ,Y (a))],

(15.13)
where el = (1, 2, . . . , l), and Y (a) = (Ym<a+1, . . . ,Ym6a). Note that since the ri are constant
within each group defined by the ta’s, the

∑
riYi depends on Y only through the sums of

the component Y (a)’s, hence only on the comparisons of the Yi’s between groups. Also, the
dKen(ema ,Y (a))’s depend only on the comparisons within groups. Thus Lemma 14.1 implies
that the summation is independent of the Kendall distances, hence the covariances in the final
sum of (15.14) are all zero.

Turning to the first covariance on the right-hand side, consider

Cov[Yi,dKen(em,Y )] =
∑∑

16h<j6m

Cov[Yi, I[Yh > Yj]]. (15.14)

If i 6= h and i 6= j, Yi is independent of I[Yh > Yj]. With i = h < j, we have

Cov[Yi, I[Yi > Yj]] = Cov[E[Yi |Yi],E[I[Yi > Yj] |Yi]] + E[Cov[Yi, I[Yi > Yj] |Yi]]
= Cov[Yi,E[I[Yi > Yj] |Yi]] + 0
= Cov[Yi, (Yi − 1)/(m− 1)]

=
1

m− 1
Var[Yi] =

1
m− 1

m2 − 1
12

=
m+ 1

12
. (15.15)
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(In the last term on the first line, the conditional covariance is zero since conditionally the Yi
is a constant.) Then if i = j > h, Cov[Yi, I[Yh > Yi] = −(m+ 1)/12. Thus on the right-hand side
of (15.14), there are m− i positive terms and i− 1 negative ones, and the rest are zero, hence

Cov[Yi,dKen(em,Y )] =
(m− 2i+ 1)(m+ 1)

12
= −

(m+ 1)(i− ν)
6

, ν =
m+ 1

2
. (15.16)

Thus from (15.14) and (15.16), noting that replacing ri with ri − ν does not change the covari-
ance since the sum of the Yi’s is constant, we can write

Cov[

m∑
i=1

riYi,dKen(em,Y )] = −
(m+ 1)

∑m
i=1(ri − ν)(i− ν)

6

= −
(m+ 1)

∑m
i=1(ri − ν)

2

6
, (15.17)

since the average of the i for which ri = ta is ta. We multiply that value by −2 to find the
covariance in (15.12). Using the expression for the variance Spearman’s distance from (13.36)
when there are no ties in Y , we have that

Cov[dA
Spear(w,Y ),dA

Ken(w,Y )] =
(m+ 1)

∑m
i=1(ri − ν)

2

3
=

1
m
Var[dA

Spear(w,Y )], (15.18)

the variance for Spearman being found in (13.36), where here the si = 1.
The variance for Kendall is found in (14.11):

Var[dA
Ken(w,Y )] =

m3 −
∑K
a=1m

3
a

36
+
m2 −

∑K
a=1m

2
a

24

=

∑m
i=1(ri − ν)

2

3
+
m2 −

∑K
a=1m

2
a

24
, (15.19)

where we use (13.57) to go from the second to third equality. The two previous equations
yield

E

(dA
Spear(w,Y ) − µSpear(m)

cm
− (dA

Ken(w,Y ) − µKen(m))

)2


=

∑m
i=1(ri − ν)

2

3

(
m(m+ 1)

c2
m

− 2
m+ 1
cm

+ 1
)
+
m2 −

∑K
a=1m

2
a

24

=
m2 −

∑K
a=1m

2
a

24
6
m(m−mx)

12
, (15.20)

since the given cm = m+ 1 −
√
m+ 1 renders the first term in the second line zero, and the

inequality follows from (15.8).
Now for ties in the Y , i.e., in Z, we have for any distance that dA(w, z) = E[dA(w,Y ) |Z =

z]. Following Alvo and Yu, we use Jensen’s inequality to show that for a given function h,

E[h(w,Y )2] = E[E[h(w,Y )2 |Z]]

> E[E[h(w,Y ) |Z]2]. (15.21)

Letting h be the quantity that is squared in the expectation in the first expression in (15.20),
(15.10) then follows.
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Proof of Theorem 15.1. Consider (15.5), and assume that

(m−mx)(m−nz)

m
−→∞. (15.22)

Using (13.36), (13.57), and (15.19), we can show that

σ2
Spear(m,n) ≡ Var[dA

Spear(W ,Z)] =
(m3 −

∑
m3
a)(m

3 −
∑
n3
a)

36(m− 1)
, and

σ2
Ken(m,n) ≡ Var[dA

Ken(W ,Z)] =
(m3 −

∑
m3
a)(m

3 −
∑
n3
a)

36(m)3
+O(m2)

=
σ2

Spear(m,n)

m(m− 2)
+O(m2). (15.23)

Let

Sm =
dA

Spear(W ,Z) − µSpear(m)

σSpear(m,n)
and Km =

dA
Ken(W ,Z) − µKen(m)

σKen(m,n)
. (15.24)

Multiply both sides of (15.10) by c2
m/σ

2
Spear(m,n) to obtain

E

[(
Sm −

cmσKen(m,n)
σSpear(m,n)

Km

)2
]
6
c2
mm(m−mx)

12σ2
Spear(m,n)

6
(m+ 1)2m2

12σ2
Spear(m,n)

. (15.25)

By (13.59), we have m3 −
∑
m3
a > m2(m−mx), so that

σ2
Spear(m,n)

m4 >
(m−mx)(m−nz)

36(m− 1)
, (15.26)

hence
(m+ 1)2m2

12σ2
Spear(m,n)

6
3(m+ 1)2

m2
m− 1

(m−mx)(m−nz)
−→ 0, (15.27)

by assumption (15.22). That is, the right-hand side of (15.25) goes to zero. By (15.23), the
constant multiplying Km, squared, is

c2
mσ

2
Ken(m,n)

σ2
Spear(m,n)

=
(m+ 1 −

√
m+ 1)2

m(m− 2)
+

O(m4)

σ2
Spear(m,n)

−→ 1, (15.28)

the last term going to zero by (15.22) and (15.26). Theorem 13.1 shows that Sm → N(0, 1), thus
we have that Km → N(0, 1) as well, proving (15.5).

Next turn to the case that m<x = q1 and m>x = q2 are fixed. We have from Theorem 13.2
that

1
m2

(
dA

Spear(W ,Z) − µSpear(m)
)
+
q

2
−→D V1 + . . .+Vq1 +(1−Vq1+1) + · · ·+ (1−Vq), (15.29)
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where V1, . . . ,Vq are iid with distribution F. Consider the inequality (15.10) again. Dividing
both sides by m2, since q = m−mx, we have

E

(m
cm

dA
Spear(w,Z) − µSpear(m)

m2 −
dA

Ken(w,Z) − µKen(m)

m

)2
 6

q

12m
. (15.30)

Letting m → ∞, we have the bound in (15.30) goes to zero, and m/cm → 1. Thus by (15.29)
we have (15.6).

15.3 Edgeworth and simulation approximations

In Section 13.4, we compared the Edgeworth and simulation approximations of the distri-
bution of Spearman’s distance with ties. Here we do the same for Kendall’s distance with
ties in both variables. The results are fairly similar. Those here are based on randomly take
100 examples for each m from 13 to 50, restricting then to situations where the number of
contingency tables (#T) corresponding to the particular (m,n) pair is between 104 and 108.
In general, finding the exact distribution using the contingency table approach is slower for
Kendall than Spearman, owing to the extra time it takes to calculate the distance from the
table. The algorithm for Kendall is reasonably quick if #T 6 5× 105.

As for Spearman, the differences between the Edgeworth approximations with even L

versus that with the corresponding L+ 1 is negligible, hence Figure 15.1 compares the even
cases for L = 0 to 10. Here we see that comparing the maximum errors in the density, there is
a slight jump from L = 0 to 2, but little benefit to higher L. For the distribution function, there
is a large jump from L = 0 to 2, a slight jump to L = 4, but then little more improvement. For
the relative p-value, there is substantial improvement from L = 0 to 2, then to 4, then to 6, and
a little jump to 8. Thus one would probably choose L = 4 or 6, but that choice is a bit academic
at this point, since we have analytical expressions (Section 15.4) only for cumulants up to the
fourth degree, so that we can use Edgeworth for just L up to 2. The higher cumulants for the
graphs were found using the exact distribution.

Figure 15.2 compares the Edgeworth approximation with L = 2 to the sumulations, where
for each group of numbers of tables, we have the median as well as the 5th and 95th percentiles
of the errors. It looks like Edgeworth is better than the the simulations for the error in the
density #T > 107; in the distribution #T > 106; and in the relative p-value if #T > 108, though
they are failry simlar for 107 6 #T 6 108. Note that if could use larger L, then Edgeworth
would be relative better for the p-value. Thus a reasonable rule of thumb is to use the exact
algorithm if #T 6 5× 105; use simulations if 5× 105 < #T 6 107; and Edgeworth otherwise.

15.4 Moments and cumulants

In the definition (12.35) of Kendall’s distance in the presence of ties, we sum over pairs of
indices with j < i. Here, it is more convenient to first subtract the mean (µ = m(m− 1)/4),
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Figure 15.1: Comparing the median log10(errors) of the Edgeworth approximation to the dis-
tribution of the Kendall distance with ties for L=0, 2, 4, 6, 8, and 10. The horizontal axis is
the log10(#T). The panel graphs the maximum error in the density, the middle graphs the
maximum error in the distribution functions, and the bottom graphs the maximum relative
error in the p-values. See (4.54) and (4.54).
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Figure 15.2: Comparing the log10(errors) of the Edgeworth approximation with L = 2 to esti-
mation with 500,000 simulations. The horizontal axis is the log10(#T). The three panels graph
the errors in the density, distribution function, and relative p-values, respectively. In each plot,
the solid lines represent the 5th, 50th, and 95th percentiles for the Edgeworth approximations;
the dotted lines represent the same percentiles for the simulations.
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then multiply by −4, which we can then write as a function of signs:

U ≡ u(W ,Z) = −4 (dA
Ken(W ,Z) − µ)

=
∑∑
16i 6=j6m

SijTij, (15.31)

where
Sij = Sign(Wi −Wj) and Tij = Sign(Zi −Zj), (15.32)

and Sign(a) = −1, 0, or +1 as a < 0,= 0, or > 0, as below (1.13). The factor “4” arises since
for each term in the summation of dKen we have

2(I[(wi −wj)(zi − zj) > 0] − 1) = −Sign(wi −wj)Sign(zi − zj), (15.33)

and in (15.32) we are summing over i 6= j, which is double the sum over j < i. Thus for the
Nth central moment we have

E[(dA
Ken(W ,Z) − µ)N] = (−4)N E[UN]. (15.34)

To find the Nth moment of U, we write it out as a 2N-degree sum:

E[UN] =
∑∑

16i1 6=j16m
· · ·

∑∑
16iN 6=jN6m

µW(i1j1, . . . , iNjN)µZ(i1j1, . . . , iNjN), (15.35)

where

µW(i1j1, . . . , iNjN) = E[Si1j1 · · ·SiNjN ] and µZ(i1j1, . . . , iNjN) = E[Ti1j1 · · · TiNjN ]. (15.36)

The expectations in the summands depend on the equalities among the indices. We parti-
tion the summation according to the pattern of equalities, which will be defined in such a way
that all sets of indices with a given pattern yield the same expected value for their summand.
Note that the means µW and µZ are invariant under permutation of the pairs (ik, jk), i.e., the
action (i1, j1, . . . , iN, jN) → (iπ1 , jπ1 , . . . , iπN , jπN) for π a permutation of 1, . . . ,N. Also, making
the switch (ik, jk)→ (jk, ik) just changes the sign for both means, hence their product remains
invariant. Thus any pattern is defined to be invariant under those actions. For example,
suppose N = 4 and consider the pattern Pt = (12, 13, 24, 34), which means i1 = i2, j1 = i3,
j2 = i3, and j3 = j4, and i1, j1, j2, and j3 are distinct. This pattern could also be represented as
(24, 13, 12, 34), or (21, 13, 24, 34), or (12, 14, 26, 46), etc.

Suppose P1, . . . ,PT are the patterns. Then by the independence of W and Z,

E[UN] =

T∑
t=1

n(Pt)µW(Pt)µZ(Pt), (15.37)

where n(Pt) is the number of sets of indices with pattern Pt, and µZ(Pt) and µW(Pt) are as in
(15.36) for any set of indices with pattern Pt , as long as it is the same representative for both
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W and Z. Let d(Pt) be the number of distinct indices in pattern Pt. Then with d = d(Pt), we
can write

µW(Pt) =
σW(Pt)

(m)d
where

σW(Pt) =
∑
· · ·
∑

16k1,...,kd6m,
distinct

SPt(wk1 , . . . ,wkd), (15.38)

and SPt(a1, . . . ,ad) is the value of the summand for the indices with equalities given by Pt.
For example, consider Pt = (12, 13, 24, 34), so that d(12, 13, 24, 34) = 4. Then we have

S(12,13,24,34)(a1, . . . ,a4) = S(a1 − a2)S(a1 − a3)S(a2 − a4)S(a3 − a4). (15.39)

See (4.18) for Pochhammer’s symbol (m)k. An equivalent expression to (15.37) that we find
useful is then

E[UN] =

T∑
t=1

n(Pt)

(m)d

σW(Pt)σZ(Pt)

(m)d
. (15.40)

If d(Pt) > m, then n(Pt) = 0, in which case we use the convention that n(Pt)/(m)d = 0.
The main steps for finding the Nth moment are to first find each pattern Pt of equalities

and their n(Pt)’s, then to calculate the σW(Pt) and σZ(Pt). Some preliminaries, and details for
the Nth moments, N = 2, 3, and 4, are in the following sections.

15.4.1 Some useful formulas

A pattern specifies equalities among the indices; we also deal with equalities among the values
of the Wi’s. Let the pattern of ties for the variable W be m = (m1, . . . ,mL), where each mi > 0
and m1 + · · ·+mL = m. For given Pt, we write the summand SPt as

SPt(W1, . . . ,Wd) = SPt(W1, . . . ,Wd)
∏

16i<j6d

(Iij + Iij), (15.41)

where we let
Iij = I[Wi =Wj] and Iij = I[Wi 6=Wj]. (15.42)

By multiplying out the indicator functions, the right-hand side of (15.41) can be written as
a sum of 2d terms. Many of these are zero, either because the equalities in the Wi’s yield
SPt(W1, . . . ,Wd) = 0, or the combination of indicator functions is impossible, e.g., I12I23I13 ≡ 0.
Let C(W1, . . . ,Wd) be a set of conditions on the Wi’s, and for function g define

σd{g(W1, . . . ,Wd) |C(W1, . . . ,Wd)} =
∑
· · ·
∑

16i1,...,id6m
i1,...,id distinct

C(wi1 ,...,wid) holds

g(wi1 , . . . ,wid). (15.43)

Then (15.41) is a sum of such σd’s with g = SPt . These conditions end up equating certain of
the Wi’s, and otherwise specifying their values are distinct. For each such term, we further
decompose the sum into parts based on the order of the distinct values of Wi.
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For example, suppose d = 6 and the equality/inequality conditions yield the conditions
W1 =W2 =W4, W3 =W6, and W1,W3,W5 are distinct. Then we can write

σ6{SPt(W1, . . . ,W6) |W1 =W2 =W4,W3 =W6, & W1,W3,W5 distinct}

=
∑
π∈P3

σ6{SPt(W1, . . . ,W6) |W1 =W2 =W4,W3 =W6, & rank(W1,W3,W5) = π}

=
∑
π∈P3

SPt(π1,π1,π2,π1,π3,π2)σ6{1 |W1 =W2 =W4,W3 =W6, & rank(W1,W3,W5) = π},

(15.44)

the final equality following since the functions SPt are invariant under strict monotone func-
tions of the Wi’s. This last representation is useful because the final σ6 function depends only
on the multiplicities of the Wi’s and their order. We will use the shorthand “W(n1)

i1
, . . . ,W(nq)

iq
”

to mean that Wi1 is equal to n1−1 other Wi’s, Wi2 is equal to n2−1 other Wi’s, etc. Thus
the condition in the final summation of (15.44) would be written {rank(W(3)

1 ,W(2)
3 ,W(1)

5 ) = π}.
More generally, we have

σd{SPt(W1, . . . ,Wd) |W
(n1)
1 , . . . ,W(nq)

q , d.}

=
∑
π∈Pq

SPt(π1, . . . ,πq, . . .)σd{1 | rank(W(n1)
1 , . . . ,W(nq)

q ) = π}, (15.45)

where d = n1 + · · ·+ nq, and the second “. . .” in the argument for SPt consists of replacing
the Wi, i > q, with the πj such that Wi =Wj, 1 6 j 6 q.

Now define
ρn1,n2,...,nq = σd{1 |W

(n1)
1 < W

(n2)
2 < · · · < W(nq)

q }. (15.46)

Note that the value is invariant under permutation of the Wi’s, so that it doesn’t matter which
of them are equal to each other, just the resulting nj’s. Summing over permutations of the nj,
we obtain the number of ways for the W1, . . . ,Wq to be distinct, which we denote by ε:

εn1,n2,...,nq ≡ σd{1 |W
(n1)
1 ,W(n2)

2 , . . . ,W(nq)
q d.} (“d.” means “distinct”)

=
∑
π∈Pq

ρnπ1 ,nπ2 ,...,nπq . (15.47)

Note in particular that if there are q subscripts, all equal to r, since the ρ’s are then all the
same, we have

εrr···r = q!ρrr···r. (15.48)

Thus from (15.45),

σd{SPt(W1, . . . ,Wd) |W
(r)
1 , . . . ,W(r)

q , distinct} =
∑
π∈Pq

SPt(π1, . . . ,πq, . . .)ρrr···r

= εrr···r
1
q!

∑
π∈Pq

SPt(π1, . . . ,πq, . . .). (15.49)
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If q− 1 of the multiplicities are equal, e.g., (r1, . . . , rq) = (r, s, . . . , s), with q− 1 s’s, then we
can collect terms depending on the value of π1:

σd{SPt(W1, . . . ,Wd) |W
(r)
1 ,W(s)

2 , . . . ,W(s)
q , distinct} =

q∑
k=1

ρs···srs···s
∑
π∈Pq
π1=k

SPt(π1, . . . ,πq, . . .),

(15.50)
where in the subscript of ρ, the r is in the kth slot.

A special case that is easy to deal with is exemplified by the summand S12S13S45. If the W4
and W5 are equal to the same number of other Wi’s, then by symmetry the sum will be zero
since Sab = −Sba. Note that the key is that W4 and W5 appear only in that one Sij. That is,

σd{Si1j1 · · ·SiNjN |C(W1, . . . ,Wd)) = 0 (15.51)

if for some k
{ik, jk}∩ ({i1, i2, . . . , iN, jN}− {ik, jk}) = ∅, (15.52)

and only requirement the condition C(W1, . . . ,Wd) places on Wik and Wjk is that they have
the same multiplicity.

Another formula we find useful is for summands of the form S12S13I[W2 6= W3] with
multiplicities r1, r2, r3, basing it on (15.45). The terms in the sum are based on the permutations
π ∈ P3, where the condition translates the ranking as an ordering:

π S(π1 − π2)S(π1 − π3) Condition

(1, 2, 3) +1 W
(r1)
1 < W

(r2)
2 < W

(r3)
3

(1, 3, 2) +1 W
(r1)
1 < W

(r3)
3 < W

(r2)
2

(2, 1, 3) −1 W
(r2)
2 < W

(r1)
1 < W

(r3)
3

(2, 3, 1) −1 W
(r3)
3 < W

(r1)
1 < W

(r2)
2

(3, 1, 2) +1 W
(r2)
2 < W

(r3)
3 < W

(r1)
1

(3, 2, 1) +1 W
(r3)
3 < W

(r2)
2 < W

(r1)
1

(15.53)

Thus by (15.45) and (15.46),

σd{S12S13 |W
(r1)
1 ,W(r2)

2 ,W(r3)
3 , d.} = ρr1r2r3 + ρr1r3r2 + ρr2r3r1 + ρr3r2r1 − ρr3r1r2 − ρr2r1r3 . (15.54)

A special case is when two of the multiplicities are equal, in which case the sum depends on
whether the single multiplicity is in the first slot or not. That is,

σd{S12S13 |W
(r)
1 ,W(s)

2 ,W(s)
3 , d.} = 2(ρrss − ρsrs + ρssr);

σd{S12S13 |W
(s)
1 ,W(r)

2 ,W(s)
3 , d.} = 2ρsrs. (15.55)

Consider the extension to four distinct variable, where the fourth is uninvolved in the
S12S13 part. Then if we fix the rank of the fourth variable at k, the summation is the same as in
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(15.54), but with the fourth multiplicity inserted between the (k− 1)st and (k+ 1)st subscript.
Thus

σd{S12S13 |W
(r1)
1 ,W(r2)

2 ,W(r3)
3 ,W(r4)

4 , d.} = (ρr4r1r2r3 + ρr1r4r2r3 + ρr1r2r4r3 + ρr1r2r3r4)

+ (ρr4r1r3r2 + ρr1r4r3r2 + ρr1r3r4r2 + ρr1r3r2r4) + (ρr4r2r3r1 + ρr2r4r3r1 + ρr2r3r4r1 + ρr2r3r1r4)

+ (ρr4r3r2r1 + ρr3r4r2r1 + ρr3r2r4r1 + ρr3r2r1r4) − (ρr4r3r1r2 + ρr3r4r1r2 + ρr3r1r4r2 + ρr3r1r2r4)

− (ρr4r2r1r3 + ρr2r4r1r3 + ρr2r1r4r3 + ρr2r1r3r4). (15.56)

Paralleling (15.55), we have the case with three multiplicities equal, which has three possibili-
ties:

σd{S12S13 |W
(r)
1 ,W(s)

2 ,W(s)
3 ,W(s)

4 , d.} = 6ρrsss − 2ρsrss − 2ρssrs + 6ρsssr;

σd{S12S13 |W
(s)
1 ,W(r)

2 ,W(s)
3 ,W(s)

4 , d.} = 4(ρsrss + ρssrs);

σd{S12S13 |W
(s)
1 ,W(s)

2 ,W(s)
3 ,W(r)

4 , d.} = 6(ρrsss + ρsrss + ρssrs + ρsssr) = εrsss. (15.57)

Most of the σd{SPt}’s are functions just of a number of such ε’s, though a few need specific
ρ’s as well. We now derive some specific formulas we’ll need for ρ and ε. We first define
some basic functions we need. Starting with m = (m1, . . . ,mK), the pattern of ties for W , we
define for positive integer r,

m(r) = ((m1)r, . . . , (mK)r). (15.58)

We need the sum and sum of products of these, leading us to define

Σr =

K∑
a=1

(ma)r and, more generally, Σr1···rs =
K∑
a=1

(ma)r1 · · · (ma)rs . (15.59)

Note that Σ1 =
∑
ma(= m), Σ11 =

∑
m2
a, etc. Partial sums we denote as follows:

m<a =

a−1∑
i=1

mi, m<a(r) =

a−1∑
i=1

(mi)r, m>a =

m∑
i=a+1

mi, and m>a(r) =

m∑
i=a+1

(mi)r. (15.60)

Consider ρrs = σr+s{1 |W
(r)
1 < W

(s)
2 }. Thus we have r+s Wi’s, r of which are equal to W1

and s of which are equal to W2. Fix a < b with W1 = a and W2 = b. We need to choose,
without replacement, r of the wi = a’s, of which there are ma, to assign to the Wi’s equalling
W1. Thus there are (ma)r possibilities. Likewise, there are (mb)s ways to choose the wi that
equal b. Multiplying those counts, and summing over a < b, we have that

ρrs =

K−1∑
a=1

K∑
b=a+1

(ma)r(mb)s

=

K−1∑
a=1

(ma)r

K∑
b=a+1

(mb)s

=

K−1∑
a=1

(ma)rm>a(s). (15.61)
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Note that ρrs =
∑K
a=2m<a(r)(ma)s would work, too. With three subscripts, we set b < a < c:

ρrst =

K−1∑
a=2

a−1∑
b=1

K∑
c=a+1

(mb)r(ma)s(mc)t

=

K−1∑
a=2

m<a(r)(ma)sm>a(t). (15.62)

For the general case, we have

ρr1···rd =
∑
· · ·
∑

16a1<a2<···<ad6K
(ma1)r1(ma2)r2 · · · (mad)rd . (15.63)

In the special case that the ri’s are equal to r, the value is an elementary symmetric poly-
nomial of degree d in the elements of m(r). See Wikipedia contributors (2019b) for Newton’s
identities, which find the ρrr···r in terms of the Σr···r (where there are d “r” in the subscript).

Turn to ε’s in (15.47). For the general case, we build up from d = 2 subscripts, finding the
ε’s as functions of the Σr1···rd of (15.59). The formula for εrs is like that for ρrs in (15.61), but
with an inequality. Using (15.59), we find

εrs =

K∑
a=1

(ma)r
∑
b 6=a

(mb)s

=

K∑
a=1

(ma)r(Σr − (ma)s)

=

K∑
a=1

(ma)rΣr −

K∑
a=1

(ma)r(ma)s

= ΣrΣs − Σrs. (15.64)

Now

εrst =

K∑
a=1

(ma)r
∑
b 6=a

(mb)s
∑
c 6=a,b

(mc)t. (15.65)

For fixed a, the final two summations equal εst, but using m without the ath component,
which is as in (15.64) with the Σ’s leaving out ma. Thus,

εrst =

K∑
a=1

(ma)r ((Σs − (ma)s)(Σt − (ma)t) − (Σst − (ma)s(ma)t))

=

K∑
a=1

(ma)r (ΣsΣt − (ma)sΣt − Σs(ma)t + (ma)s(ma)t − Σst + (ma)s(ma)t)

= ΣrΣsΣt − ΣrsΣt − ΣrtΣs − ΣstΣr + 2Σrst. (15.66)
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A similar approach will show that

εrstu = ΣrΣsΣtΣu − ΣrΣsΣtu − ΣrΣtΣsu − ΣrΣuΣst − ΣsΣtΣru − ΣsΣuΣrt − ΣtΣuΣrs

+ 2ΣrΣstu + 2ΣsΣrtu + 2ΣtΣrsu + 2ΣuΣrst + ΣrsΣtu + ΣrtΣsu + ΣruΣst − 6Σrstu. (15.67)

For an arbitrary number d of subscripts, we wish to find εr1···rd . Note that in the above
formulas, there is a term for each partition of the set of subscripts for the ε. The sign in
front of the term depends on the number of subsets in the partition, and the magnitude of its
coefficient depends on the numbers of elements in the subsets. Specifically, letting (A1, . . . ,AJ)
be a partition of the subscripts, and for set A = {s1, . . . , sk}, defining ΣA = Σs1···sk , we have

εr1···rd =
∑

Partitions (A1,...,AJ)

(−1)d−J(#A1 − 1)! · · · (#AJ − 1)!ΣA1 · · ·ΣAJ . (15.68)

For d = 5, we need only ε11112 and ε11111, which are, respectively,

ε11112 = m4Σ2 − 4m3Σ12 − 6m2Σ11Σ2 + 12m2Σ112 + 12mΣ11Σ12 + 3Σ2
11Σ2 + 8mΣ111Σ2

− 24mΣ1112 − 12Σ11Σ112 − 8Σ111Σ12 − 6Σ1111Σ2 + 24Σ11112, (15.69)

and

ε11111 = m5 − 10m3Σ11 + 20m2Σ111 + 15mΣ2
11 − 20Σ11Σ111 − 30mΣ1111 + 24Σ11111. (15.70)

(Recall m = Σ1.) The only representative we need for d = 6 is that with all ones:

ε111111 = m6 − 15m4Σ11 + 40m3Σ111 + 45m2Σ2
11 − 90m2Σ1111 − 120mΣ11Σ111

− 15Σ3
11 + 144mΣ11111 + 90Σ11Σ1111 + 40Σ2

111 − 120Σ111111 (15.71)

15.4.2 The variance

For the variance, we deal with pairs of pairs of indices: ij,kl, where i 6= j and k 6= l. There
are three patterns, depending on the number of distinct indices in the two pairs. The patterns
and their n(Pt)/(m)d and σW’s are given next:

d = #distinct indices Pt n(Pt)/(m)d σW

2 12, 12 2 ε11
3 12, 13 4 ε12 +

1
3ε111

4 12, 34 1 0

(15.72)

The pattern for two distinct indices is (12, 12), which includes both (ij, ij) and (ij, ji). There
are (m)2 ways to choose the i and j, hence n(12, 12) = 2(m)2. The summand is S2

12 = I[W1 6=
W2], hence we need the sum σ2{1 |W

(1)
1 6=W(1)

2 }, which by (15.47) is ε11.
Three distinct indices yields the pattern (12, 13). There are four ways to arrange three

indices, depending on where the two equal ones are: (ij, ik), (ij,ki), (ji, ik), (ji,ki). Then there
are (m)3 ways to choose the i, j,k. To find the summation, we use (15.41). The summand is
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S12S13 = S(W1 −W2)S(W1 −W3), hence is zero if W1 = W2 or W3. Thus we need only deal
with whether or not W2 =W3:

S12S13(I23 + I23) = S
2
12 + S12S13I23

= I12 + S12S13I23. (15.73)

Since W2 =W3, the first term yields the sum

σ3{1 |W
(1)
1 6=W(2)

2 } = ε12, (15.74)

again by (15.47). For the second term, we can use (15.49) because the three multiplicities (for
W1,W2,W3) are one. It is not hard to see that∑

π∈P3

S(π1 − π2)S(π1 − π3) = 2, (15.75)

because the summand is +1 if the rank of W1 is 1 or 3, and −1 otherwise. Thus, since d! = 6,

σ3{S12S13 |W1,W2,W3 d.} =
1
3
ε111. (15.76)

With no equalities, i.e., d = 4, we have the pattern (12, 34), and all multiplicities of one, so
that by (15.38), σW(12, 34) = 0.

Thus from (15.40)

E[U2] = 4
σW(12, 13)σZ(12, 13)

(m)3
+ 2

σW(12, 12)σZ(12, 12)
(m)2

, (15.77)

and by (15.37),

Var[dA
Ken(W ,Z)] =

1
16
E[U2]. (15.78)

There are many equivalent ways to express this variance. Using (15.64) and (15.66), for W ,
since Σ1 = m, we have

ε11 = m2 −
∑

m2
a = (m)2 −

∑
(ma)2,

ε12 = m
∑

(ma)2 −
∑

ma(ma)2, and

ε111 = m3 − 3mΣ11 + Σ111 = m3 − 3m
∑

m2
a + 2

∑
m3
a. (15.79)

Then some further manipulation shows that

σW(12, 13) = ε12 +
1
3
ε111 =

1
3
((m)3 −

∑
(ma)3). (15.80)

Thus

Var[dA
Ken(W ,Z)] =

((m)3 −
∑

(ma)3)((m)3 −
∑

(na)3)

36(m)3

+
((m)2 −

∑
(ma)2)((m)2 −

∑
(na)2)

8(m)2
. (15.81)

It’s convenient to have the formulas for the MWW statistic, i.e., K = 2. Then

(m)2 −
∑

(ma)2 = 2m1m2 and (m)3 −
∑

(ma)
3 = 3m1m2(m− 2). (15.82)

The higher moments are found similarly, but the formulas become more complicated.
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15.4.3 The third moment

Here we deal with triples of indices, (ij,kl,pq). Table (15.83) displays the patterns Pt, their
counts n(Pt), and their σW’s:

d Pt n(Pt)/(m)d σW

2 12, 12, 12 4 0
3 12, 12, 13 24 ρ21 − ρ12

12, 13, 23 8 0
4 12, 12, 34 6 0

12, 13, 14 8 ρ31 − ρ13
12, 14, 34 24 0

5 12, 13, 45 12 0
6 12, 34, 56 1 0

(15.83)

Since the n(Pt)/(m)d does not depend on m, as long as m > d, we found the values here
for m = 6 by using an algorithm to run over all (ij,kl,pq)’s, and counting the number which
conformed to each pattern. One check of these counts is to note that the total number of
triples is (m(m− 1))3, to which the third column times (m)d should (and does) sum.

We give the details for (15.83). First, since Sij is either 0 or ±1, S3
ij = Sij, hence σW(12, 12, 12)

is zero by (15.51). That equation also shows the sum is zero for patterns (12, 12, 34), (12, 13, 45),
and (12, 34, 56).

For (12, 12, 13), the summand is I12S13. We proceed similar to (15.73), finding

σ3{I12S13} = σ3{S12 |W
(1)
1 ,W(2)

2 }+ σ3{S13 |W1,W2,W3 d.}. (15.84)

The second term is zero, again by (15.51). We use (15.45) for the first term, where there are
just the two permutations (1, 2) and (2, 1). S12 is −1 if W1 < W2 and +1 if W1 > W2, thus with
multiplicities 1 and 2 for W1 and W2, respectively, we obtain

σ3{S12 |W
(1)
1 ,W(2)

2 } = −ρ12 + ρ21. (15.85)

For the pattern (12, 13, 23), we need to sum over just the indices with W1, W2, and W3
distinct. For each of the six permutations, it is easy to find S12S13S23, of which there are three
permutations that yield +1 and three that yield −1. Since the multiplicities are all one, by
(15.49) the summation is zero.

The pattern (12, 13, 14) has summand zero ifW1 is equal to any of the other three variables.
Thus to utilize (15.41) we need to consider the three equalities among W2,W3,W4. If the three
are distinct, then we can use (15.49) again. The sum over the permutations turns out to
be zero, and the multiplicities are all equal to one, hence the sum is zero. Next suppose
W2 =W3 6=W4. Then we have

σ4{S14 |W
(1)
1 ,W(2)

2 ,W(1)
4 , d.} = 0 (15.86)

by (15.51). By symmetry, the value is also zero for W2 = W4 6= W3 and W3 = W4 6= W2. The
other possibility is W2 =W3 =W4, in which case we have

σ4{S12 |W
(1)
1 ,W(3)

2 } = ρ31 − ρ13, (15.87)
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d Pattern Pt n(Pt)/(m)d σW

2 12, 12, 12, 12 8 ε11
3 12, 12, 12, 13 64 ε12 +

1
3ε111

12, 12, 13, 13 48 ε12 + ε111
12, 13, 23, 23 96 1

3ε111
4 12, 12, 13, 14 96 ε13 + 4ρ121 + ε112 +

1
3ε1111

12, 13, 23, 34 192 0
12, 12, 12, 34 16 0
12, 12, 13, 24 96 −ε22 − 2(ρ112 − ρ121 + ρ211)

12, 12, 13, 34 192 −ε22 − ε112 − 2(ρ112 + ρ211) −
1
3ε1111

12, 12, 34, 34 12 2ε22 + 4ε112 + ε1111
12, 13, 24, 34 48 2 ε112 + ε22 +

1
3ε1111

5 12, 13, 14, 15 16 ε14 + 8ρ131 + 3ε122 + 2ε1112 +
1
5ε11111

12, 12, 13, 45 96 0
12, 13, 23, 45 32 0
12, 13, 24, 25 192 ε23 + ε122 + 2(ρ311 + ρ113) +

2
3ε1112 +

1
15ε11111

12, 12, 34, 35 48 2ε23 + 2ε113 + 4ε122 + 3εe1112 +
1
3ε11111

12, 13, 24, 35 192 ε23 + ε113 + 2ε122 +
4
3ε1112 +

2
15ε11111

6 12, 12, 34, 56 12 0
12, 13, 24, 56 96 0
12, 13, 14, 56 32 0
12, 13, 45, 46 48 ε24 + ε114 + ε33 + 6ε123 +

5
3ε222 + 2ε1113

+5ε1122 +
5
3ε11112 +

1
9ε111111

7 12, 13, 45, 67 24 0
8 12, 34, 56, 78 1 0

Table 15.1: The patterns for the fourth moment, and their corresponding sums.

using the same reasoning as for (15.85).
Finally, turn to the pattern (12, 14, 34). If we make the switches 1↔ 4 and 2↔ 3, we have

S43S41S21 = −S12S14S34. Since the Wi’s are interchangeable, both summands S43S41S21 and
S12S14S34 have the same sum, which thus must be zero.

As in (15.40) we have we have

E[U3] = 24
σW(12, 12, 13)σZ(12, 12, 13)

(m)3
+ 8

σW(12, 13, 14)σZ(12, 13, 14)
(m)4

, (15.88)

and by (15.37),

E[(dA
Ken(W ,Z) − µ)3] = −

1
64
E[U3]. (15.89)
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15.4.4 The fourth moment

For the fourth moment, we have to deal with four pairs of indices. Table (15.1) contains the
results. The patterns (12, 12, 12, 12) and (12, 12, 12, 13) have the same σW’s as the patterns
(12, 12) and (12, 13) in (15.72), respectively, since S3

ij = Sij. The patterns with σW(Pt) = 0,
except for (12, 13, 23, 34), have at least one of their pairs of indices with neither index in
common with any of the other pairs, hence have summation zero by (15.51).

We treat the other patterns individually.

• (12, 12, 13, 13). Here we consider whether W2 = W3 or not. If so, then the summand is
I12, and if not, it is that all three Wi’s are distinct. Thus we can write

σW(12, 12, 13, 13) = σ3{1 |W
(1)
1 6=W(2)

2 }+ σ3{1 |W1,W2,W3, distinct}
= ε12 + ε111, (15.90)

by the definition in (15.47).

• (12, 13, 23, 23). Here the summand is zero unless the three Wi are distinct. Thus we have
the same sum as in (15.76), i.e., ε111/3.

• (12, 12, 13, 14). We deal with equalities/inequalities among W2,W3,W4. If W2 = W3 =
W4, the summand is I12, and since the multiplicities are 1 and 3, the sum is ε13. If
W2 = W3 6= W4, we have the summand S12S14 with condition W(1)

1 ,W(2)
2 ,W(1)

4 , distinct.
Thus by (15.54) we have

σ4{S12S14 |W
(1)
1 ,W(2)

2 ,W(1)
4 d.} = 2ρ121. (15.91)

The summand for W2 =W4 6=W3 is also 2ρ121. For W3 =W4 6=W2, the sum is

σ3{1 |W
1)
1 ,W(1)

2 ,W(2)
3 } = ε112. (15.92)

Finally, consider the case W2,W3,W4 are distinct. Using (15.49), we have d! = 24 and the
sum over the π ∈ P4 turns out to be 8, hence

σ4{S13S14 |W1,W2,W3,W4 d.} =
1
3
ε1111. (15.93)

Summing the various components yields the result in Table 15.1.

• (12, 13, 23, 34). If we switch W1 and W2 in the summand, we go from S12S13S23S34 to
S21S23S13S34, which is its opposite. Thus the summation is zero.

• (12, 12, 13, 24). The equalities we deal with here are W1 = W4, W2 = W3, and W3 = W4.
If all hold, the summand is zero. Looking at sets of two of the equalities, the only one
not zero is W1 = W4, W2 = W3, but W3 6= W4, which has summand S3

12S21 = −I12. The
multiplicities are both two, hence

σ4{−I12 |W
(2)
1 ,W(2)

2 } = −ε22. (15.94)
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The sums for the single equalities are next.

I14 I23 I34 : σ4{−S12S13 |W
(2)
1 ,W(1)

2 ,W(1)
3 d.}

I14 I23 I34 : σ4{−S21S24 |W
(1)
1 ,W(2)

2 ,W(1)
4 d.}

I14 I23 I34 : σ4{S31S32 |W
(1)
1 ,W(1)

2 ,W(2)
3 d.}

(15.95)

In each case, the variable with multiplicity of two is the one appearing in both Sij’s, so
that the three summations are the same except for sign. The sum of the three is thus the
same as the first one, which by (15.54) is

σ4{−S12S13 |W
(2)
1 ,W(1)

2 ,W(1)
3 } = −2ρ211 − 2ρ112 + 2ρ121. (15.96)

The case that all Wi are distinct yields zero, since the sum over the π ∈ P4 of the
summand is zero. Thus the total is the sum of (15.94) and (15.96).

• (12, 12, 13, 34). We look at the equalities (among W1 = W4,W2 = W3,W2 = W4) that do
not lead to a summand of zero:

(In)equalities Summand Condition Sum

I14 I23 I24 −I12 W
(2)
1 ,W(2)

2 d. −ε22

I14 I23 I24 −I12I13 W
(2)
1 ,W(1)

2 ,W(1)
3 d. −ε112

I14 I23 I24 −S21S24 W
(1)
1 ,W(2)

2 ,W(1)
4 d. −2ρ211 − 2ρ112 + 2ρ121

I14 I23 I24 −S31S32 W
(1)
1 ,W(2)

2 ,W(1)
3 d. −2ρ121

I14 I23 I24 −S31S34I12 W1,W2,W3,W4 d. −1
3ε1111

(15.97)

The first two sums follow directly from (15.47). The third is the same as (15.96), and the
fourth is the negative of (15.91). The final one is the negative of (15.93). Summing the
final column yields the result in Table 15.1

• (12, 12, 34, 34). The extra equalities are W1 =W3,W1 =W4,W2 =W3,W2 =W4. If three
or more of these hold, the summand is zero. The only pairs of these equalities that yield
nonzero summands are W1 = W3,W2 = W4 and W1 = W4,W2 = W3. Both pairs yield
a sum σ4{1 |W

(2)
1 ,W(2)

2 } ≡ ε22. All four single equalities yield the same sum, which is
equivalent to σ4{1 |W

(2)
1 ,W(1)

2 ,W(1)
4 } ≡ ε112. Finally, if the four variables are distinct, the

sum is ε1111. Thus the total sum is 2ε22 + 4ε112 + ε1111.

• (12, 13, 24, 34). We consider case depending on whether W1 =W4 and/or W2 =W3.

(In)equalities Summand Condition Sum

I14 I23 I12 W
(2)
1 ,W(2)

2 d. ε22

I14 I23 I12I13 W
(2)
1 ,W(1)

2 ,W(1)
3 d. ε112

I14 I23 I12I24 W
(1)
1 ,W(2)

2 ,W(1)
4 d. ε112

I14 I23 S12S13S24S34 W1,W2,W3,W4 d. 1
3ε1111

(15.98)
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The first three sums follow directly from (15.47). The final one uses (15.49), where the
sum of the summand over the π ∈ P4 is 8, hence with d! = 24, we obtain ε1111/3. Thus
the total sums up the last column.

• (12, 13, 14, 15). We need to consider all possible equalities/inequalities amongW2,W3,W4,W5,
of which there are six. We work according to how many of the six are equalities. In each
case, there are zero, one, or several equivalent sets of equalities that have nonzero sum-
mands. We give one archtype example for each (if there are any).

Equalities Archtype # Summand Condition Sum

0 All distinct 1 S12S13S14S15 W1, . . . ,W5 d. 1
5ε11111

1 I23I24I25I34I35I45 6 S14S15 W
(1)
1 ,W(2)

2 ,W(1)
4 ,W(1)

5 d. 1
3ε1112

2 I23I24I25I34I35I45 3 I12I14 W
(1)
1 ,W(2)

2 ,W(2)
4 d. ε122

3 I[W2=W3=W4 6=W5] 4 S12S15 W
(1)
1 ,W(3)

2 ,W(1)
5 d. 2ρ131

4 0
5 0
6 I[W2=W3=W4=W5] 1 I12 W

(1)
1 ,W(4)

2 ε14

(15.99)

If none of the equalities hold, then all five variables are distinct, so we can use (15.49).
The sum over the π of the summand is 24, and the q! = 120, hence the sum is ε11111/5.
There are six ways exactly on equality can hold, and by symmetry they all have the same
sum. Taking W2 = W3, the summand is S2

12S14S15. Since otherwise all the variables are
distinct, we can use the summand S14S15. We use (15.45). Since the multiplicity of W2 is
two, while the others’ is one, we arrange the sum depending on the rank of W2 (setting
(W1,W2,W4,W5) = (π1,π2,π3,π4)):

σd{S14S15 |W
(1)
1 ,W(2)

2 ,W(1)
4 ,W(1)

5 d.} =
4∑
j=1

∑
π∈P4,π2=j

S(π1 −π3)S(π1 −π4)ρ1...2...1, (15.100)

where the “2” in the “1. . .2. . .1” is in the jth slot. But the summand does not depend on
π2, so by (15.75) the inner sum of summand is 2 for each fixed π2. Thus,

σd{S14S15 |W
(1)
1 ,W(2)

2 ,W(1)
4 ,W(1)

5 d.} = 2(ρ2111 + ρ1211 + ρ1121 + ρ1112) (15.101)

=
1
3
ε1112. (15.102)

There are
(6

2

)
= 15 pairs of equalities to consider. If the indices in the two equali-

ties intersect, e.g., W2 = W3 and W3 = W5, then since the inequalities would include
W2 6= W5, we have an impossibility. There are twelve such pairs. The remaining three
are I23I45, I14I35, and I25I34, which all yields the same sum. Taking the first pair, the
summand is I12I14, which with the condition W(1)

1 ,W(2)
2 ,W(2)

4 distinct yields a sum of
ε122 by (15.47).
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Every triple of equalities has at least one pair for which the indices overlap. Thus as
in the previous paragraph, for the case to be possible, the other equality has to overlap
the others. For example, I23I25I35I24I34I45 = I[W2 = W3 = W5 6= W4] is nonzero, and
the other nonzero cases have three Wi’s equal to each other, but not equal to the fourth.
Thus there are four possibilities. Each is equal to

σ5{S12S15 |W
(1)
1 ,W(3)

2 ,W(1)
5 d.} = 2ρ131, (15.103)

using the same idea as in (15.91).

Any four or more of the equalities will imply that W2 = W3 = W4 = W5, hence any
left-over inequalities will produce an impossibility. Thus there are no nonzero sums
for four or five equalities. For six, we have the four all equal, and the summand of I12
with multiplicities (1,4), hence the sum is ε14. The total for this pattern is found by
multiplying the “#” and “Sum’ columns in (15.99), then adding.

• (12, 13, 24, 25). We proceed much as we did for the previous pattern, though the lack of
as much symmetry requires more cases. The extra possible (in)equalities to consider are
14, 15, 23, 34, 35, and 45. If all of these are inequalities, then we use (15.49) to find

σ5{S12S13S24S25 |W1, . . . ,W5 d.} =
1

15
ε11111 (15.104)

since the sum over the π is 8, and q! = 120. For just one inequality, we note that by
symmetry W1 = W4 and W1 = W5 yield the same sum, as do W3 = W4 and W3 = W5.
In each case, we have multiplicities with three 1’s and one 2. We use the idea in (15.100),
where the inner sum fixes the rank of the variable with multiplicity 2. We obtain the
following:

Equalities Summand Condition Sum

I14 or I15 S13S25 W
(2)
1 ,W2,W3,W5 d. 0

I23 S24S25 W1,W(2)
2 ,W4,W5 d. 6ρ2111 − 2ρ1211 − 2ρ1121 + 6ρ1112

I34 or I35 S12S13S23S25 W1,W2,W(2)
3 ,W5 d. −2ρ2111 + 2ρ1211 + 2ρ1121 − 2ρ1112

I45 S12S13 W1,W2,W3,W(2)
4 d. 2ρ2111 + 2ρ1211 + 2ρ1121 + 2ρ1112

Total 4(ρ2111 + ρ1211 + ρ1121 + ρ1112) =
2
3ε1112

(15.105)
For the cases with two possible equalities, we indicate the summand and condition for
the first mentioned. All other relevant pairs are inequalities. The final row in (15.105)
sums the sums, multiplying the third sum by two. Using (15.47), we see that ε1112 is the
sum of those four ρ’s times six, hence we obtain 2ε1112/3.

Consider the pairs of equalities. Again if a pair’s subscripts intersect, then either the
summand becomes zero, or with the inequalities the situation is impossible. That leaves
five pairs of equalities. The pairs (I14, I23) and (I15, I23) yield the same sum, as do the
pairs (I14, I35) and (I15, I34). These sums are

(I14, I23) : σ5{S21S25 |W
(2)
1 ,W(2)

2 ,W5 d.} & (I14, I35) : σ5{−S31S32 |W
(2)
1 ,W2,W(2)

3 d.}
(15.106)
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If in the latter expression we change 3→2 and 2→5, we see that the two expressions in
(15.106) are opposites, hence the sum of the sums for these four pairs is zero.The other
nonzero pair is (I23, I45), which renders the summand I12I24 with conditionW1,W(2)

2 ,W(2)
4

distinct. Thus by (15.47) its sum is ε122.

There are only two triples of equalities that have nonzero sums, given next:

I14, I15, I45 : σ5{S12S13 |W
(3)
1 ,W2,W3} = 2ρ311 − 2ρ131 + 2ρ311

I34, I35, I45 : σ5{S12S13 |W1,W2,W(3)
3 } = 2ρ131. (15.107)

See (15.54), or (15.96) (multiplied by −1, with multiplicity “2” replaced with “3”) and
(15.103).

The single nonzero quadruple of equalities is (I14, I15, I45, I23), which has summand I12
and multiplicities 3, 2, hence sum ε23. All sets of five equalities, and the set of six, has
zero sum. Thus we find the overall sum for this pattern by summing the results in
(15.104), (15.105), (15.107), and the ε122 for the pairs, and ε23 for the quadruples.

• (12, 12, 34, 35). The extra equalities we have here are I13, I14I15, I23, I24, I25, I45. If none of
those equalities hold, then using (15.49) we find the sum is ε11111/3. For single equalities,
we have three different sums, as follows, where the summand and condition is for the
first mentioned possibility:

Equalities Summand Condition Sum

I13 or I23 S13S15 W
(2)
1 ,W2,W4,W5 d. 6ρ2111 − 2ρ1211 − 2ρ1121 + 6ρ1112

I14 or I15 S31S35 W1,W(2)
2 ,W3,W5 d. 4ρ1211 + 4ρ1121

or I24 or I25

I45 I12I34 W1,W2,W3,W(2)
4 d. ε1112

Total 3ε1112
(15.108)

The first two lines use (15.57), and the final one uses (15.47). The sum of the sums for
the first six equalities is

2(6ρ2111 − 2ρ1211 − 2ρ1121 + 6ρ1112) + 16(ρ1121 + ρ1211) = 12(ρ2111 + ρ1211 + ρ1121 + ρ1112)

= 2ε1112. (15.109)

Most pairs of equalities yield a sum of zero. The next table summarizes the nonzero
pairs.

Equalities Summand Condition Sum

(I13, I45), (I23, I45) I12I14 W
(2)
1 ,W2,W(2)

4 d. ε122

(I13, I24), (I13, I25) S12S15 W
(2)
1 ,W(2)

2 ,W5 d. 2ρ212
(I14, I23), (I15, I23)

(I14, I25), (I15, I24) S31S32 W
(2)
1 ,W(2)

2 ,W3 d. 2(ρ122 − ρ212 + ρ221)

Total 3ε122

(15.110)
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The second and third sums add to 8ρ212 + 4(ρ122 − ρ212 + ρ221) = 2ε122, hence the total is
3ε122.

There are two nonzero triples of equalities (with the same sum), and two nonzero
quadruples (also with the same sum), as below:

(I14, I15, I45) or (I24, I25, I45) : σ5{I12I13 |W
(3)
1 ,W2,W3} = ε113;

(I14, I15, I23, I45) or (I13, I24, I25, I45) : σ5{I12 |W
(3)
1 ,W(2)

2 } = ε23. (15.111)

For the total we add the ε11111/3 from the first paragraph to the totals in (15.108), (15.110),
and (15.111).

• (12, 13, 24, 35). Now the extra equalities are I14, I15, I23, I25, I34, I45. Using (15.49) for the
case that none of those qualities hold, we find the sum over π to be 16, hence with
q! = 120, the overall sum is 2ε11111/15. The next table has the results for single equalities
holding:

Equalities Summand Condition Sum

I14 or I15 S31S35 W
(2)
1 ,W2,W3,W5 d. 4ρ1211 + 4ρ1121

I23 S24S25 W1,W(2)
2 ,W4,W5 d. 6ρ2111 − 2ρ1211 − 2ρ1121 + 6ρ1112

I25 or I34 S12S13S24S32 W1,W(2)
2 ,W3,W4 d. 0

I45 S12S13S24S34 W1,W2,W3,W(2)
4 d. 1

3ε1112

Total 4
3ε1112

(15.112)
The first two lines use (15.57), and the last two need the more general (15.45). For the
third, fixing the π4 = k, the sum of the summand over the other πi’s is zero for each k.
For the fourth, the sum is 2 for each k.

The pairs of equalities where the equality’s subscripts intersect have sums of zero. The
others are next:

Equalities Summand Condition Sum

(I14, I23), (I15, I23) S21S25 W
(2)
1 ,W(2)

2 ,W5 d. 2ρ212

(I14, I25), (I15, I34) S31S32 W
(2)
1 ,W(2)

2 ,W3 d. 2(ρ122 − ρ212 + ρ221)

(I23, I45) I12I24 W1,W(2)
2 ,W(2)

4 d. ε122

(I25, I34) −S12S13 W1,W(2)
2 ,W(2)

3 d. −2(ρ122 − ρ212 + ρ221)

Total 2ε122

(15.113)

The only set of three equalities that has a nonzero sum is (I14, I15, I45), which has the
sum σ5{I12I13 |W

(3)
1 ,W2,W3} = ε113. The only quadruple adds an equality to that triple:

(I14, I15, I45,23 ), which has sum ε23. No set of more than four equalities has a nonzero
sum. Hence with (15.112), (15.113), and the 2ε11111/15 in the first paragraph, we obtain
the answer in Table 15.1.
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• (12, 13, 45, 46). This pattern is the only one we need to handle that has six variables,
which does make it more complicated. There is a good deal of symmetry. There are now
eleven extra equalities to consider: I14, I15, I16, I23, I24, I25, I26, I34, I35, I36, and I56. With
none of them holding, we use (15.49) to find

σ6{S12S13S45S46 |W1,W2,W3,W4,W5} = 80ρ111111 =
1
9
ε111111, (15.114)

since q! = 720. The results for the single equalities follow, where the coefficients
(a,b, c,d, e) mean the sum for that equality is

aρ21111 + bρ12111 + c ρ11211 + dρ11121 + eρ11112 : (15.115)

Equality Summand Condition Coefficients

I14 S12S13S15S16 W
(2)
1 ,W2,W3,W5,W6 d. 24 −24 24 −24 24

I15 or I16 S12S13S41S46 W
(2)
1 ,W2,W3,W4,W6 d. 0 12 −16 12 0

or I24 or I34

I23 or I56 S45S46 W1,W(2)
2 ,W4,W5,W6 d. 8 8 8 8 8

I25 or I26 S12S13S42S46 W1,W(2)
2 ,W3,W4,W6 d. 0 0 16 0 0

or I35 or I36

Total 40 40 40 40 40
(15.116)

The total is 40 times the sum of the five ρ’s. Since ε11112 is 24 times the sum, the total is
5ε11112/3.

Again the pairs of equalities whose subscripts intersect have zero sums. There are 25 re-
maining pairs, which can be grouped by equivalence into six groups. The next table has
the results for one representative from each group. The coefficients are for, respectively,
ρ2211, ρ2121, ρ2112, ρ1221, ρ1212, ρ1122.

Equalities # Summand Condition Coefficients

(I14, I23) 6 S15S16 W
(2)
1 ,W(2)

2 ,W5,W6 d. 4 0 4 −4 0 4
(I15, I23) 4 S41S46 W

(2)
1 ,W(2)

2 ,W4,W6 d. 0 2 0 4 2 0
(I15, I24) 4 −S13S26 W

(2)
1 ,W(2)

2 ,W3,W6 d. −4 0 4 4 0 −4
(I15, I26) 8 S12S13S41S42 W

(2)
1 ,W(2)

2 ,W3,W4 d. 0 2 −4 0 2 0
(I23, I56) 1 1 W1,W(2)

2 ,W4,W(2)
5 d. 4 4 4 4 4 4

(I25, I36) 2 S12S13S42S43 W1,W(2)
2 ,W(2)

3 ,W4 d. 4 −4 4 4 −4 4

Total 20 20 20 20 20 20
(15.117)

Since 4 times the sum of the six ρ’s is ε1122, the total from this table is 5ε1122.

The nonzero triples of equalities sort into two types: Those with no intersections in
their subscripts, e.g., (I14, I23, I56), and those which imply the equality of three Wi’s,



DRAFT

204 CHAPTER 15. TIED RANKINGS IN BOTH VARIABLES: KENDALL

such as (I15, I16, I56). Below we have summarized the results, where again we have one
representative from each equivalent type of sum:

Equalities # Summand Condition Sum

(I14, I23, I56) 3 1 W
(2)
1 ,W(2)

2 ,W(2)
5 d. ε222

(I15, I24, I36) 4 −S31S32 W
(2)
1 ,W(2)

2 ,W(2)
3 d. −1

3ε222

(I15, I16, I56) 2 S12S13 W
(3)
1 ,W2,W3 d. 6ρ3111 − 2ρ1311 − 2ρ1131 + 6ρ1113

(I23, I25, I35) 4 S12S13 W1,W(3)
2 ,W4 d. 4ρ1311 + 4ρ1131

Total 5
3ε222 + 2ε1113

(15.118)
The sum of the last two sums is 12(ρ3111 + ρ1311 + ρ1131 + ρ1113) = 2ε1113.

There are 14 quadruples of equalities with nonzero sums. They are of four types, one
representative of each being presented below. The coefficients for the ρ’s in the order
(ρ123, ρ132, ρ213, ρ231, ρ312, ρ321).

Equalities # Summand Condition Coefficients

(I15, I16, I23, I56) 2 1 W
(3)
1 ,W(2)

2 ,W4 d. 1 1 1 1 1 1
(I14, I23, I26, I36) 4 S12S15 W

(2)
1 ,W(3)

2 ,W5 d. −1 1 1 1 1 −1
(I15, I16, I56, I24) 4 S12S13 W

(3)
1 ,W(2)

2 ,W3 d. 1 −1 1 −1 1 1
(I24, I35, I36, I56) 4 S12S13 W1,W(2)

2 ,W(3)
3 d. 1 1 −1 1 −1 1

Total 6 6 6 6 6 6
(15.119)

The sum of the six ρ’s is ε123, hence the total is 6ε123.

There are three higher-order sets of equalities yielding nonzero sums, two sextets and
one septet, as below:

Equalities Summand Condition Sum

(I15, I16, I23, I24, I34, I56) 1 W
(3)
1 ,W(3)

2 d. ε33

(I23, I25, I26, I35, I36, I56) 1 W1,W(4)
2 ,W4 d. ε114

(I14, I23, I25, I26, I35, I36, I56) 1 W
(2)
1 ,W(4)

2 d. ε24

(15.120)

Collecting the various terms, we have the result given in Table 15.1.
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Chapter 16

Incomplete rankings

Here we allow that only a subset of the objects are ranked. If J of the m objects are ranked,
then the ranked ones will have values in z of 1, . . . , J, while the non-ranked objects values
will be “∗”. E.g., if there are m = 5 objects, a possible ranking of just objects 2, 3, and 5 is
z = (∗, 3, 1, ∗, 2). Let O be the indices for the ranked objects, and for any vector x, let xO be
the subvector of xi with i ∈ O. In our example, O = {2, 3, 5} and zO = (3, 1, 2). For given O, the
space of z is

ZO = {z is 1×m |zO ∈ PJ and zi = ∗ for i 6∈ O}. (16.1)

Then for given z ∈ Z, the set of compatible full rankings is

C(z) = {y ∈ Pm | rank(yO) = zO}. (16.2)

We start by finding the conditional distributions of Yi given the Z = z, so that we can find
the averaged versions of Spearman’s, other Hoeffding, and Kendall distances. The result is
due to Alvo & Cabilio (1995).

Lemma 16.1 (Alvo and Cabilio). Given O ⊂ {1, . . . ,m}, let J ≡ #O, and suppose z ∈ ZO. Then we
have the following:

(a) For 1 6 t 6 m and 1 6 r 6 J, we have

P[Yi = t | rank(YO) = zO] =

{
gJ(t | r) if zi = r,
1
m if i 6∈ O,

(16.3)

where

gJ(t | r) =

(
t−1
r−1

)(
m−t
J−r

)(
m
J

) if t = r, . . . ,m− J+ r, and gJ(t | r) = 0 otherwise. (16.4)

Furthermore,

E[YO | rank(YO) = zO] =
m+ 1
J+ 1

zO and E[Yi | rank(YO) = zO] =
m+ 1

2
if i 6∈ O. (16.5)

205
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(b)

P[Yi > Yj | rank(YO) = zO] =


I[zi > zj] if i, j ∈ O,
1
2 if i, j 6∈ O,
zi
J+1 if i ∈ O, j 6∈ O,
1 −

zj
J+1 if i 6∈ O, j ∈ O.

(16.6)

Proof. (a) Consider the first condition in (16.3). Since zi = r, the yi has to be the rth largest
among the observed rankings, that is, among {yj | j ∈ O}. Thus t must be at least r. Also, there
have to be at least J − r of the yj larger than yi, to match with the zj larger than zi. Thus
t 6 m− J+ r. For t in the valid range, we argue that

#{y ∈ Pm |yi = t, rank(yO) = zO} =
(
t− 1
r− 1

)(
m− t

J− r

)
(m− J)!. (16.7)

We need yi = t to be the rth largest value in yO, hence r− 1 of them need to be chosen from
the t− 1 values less than t, and the other J− r must be chosen from the m− t values greater
than t. Hence the two binomial coefficients in (16.7). The remaining yj for j 6∈ O have them− J
values left unchosen, and can be in any order, hence the (m− J)! term. For the denominator,
we need #{y ∈ Y | rank(yO) = zO}. By symmetry, the number of compatible y for each z ∈ Z

is the same, being equal to #Pm/#PJ = m!/J!, hence dividing (16.7) by m!/J! yields the gJ(t | r)
in (16.4). If t < r or J− r > m− t, there are no compatible y, yielding gJ(t | r) = 0.

Next, if i 6∈ O, then there is no constraint on yi, hence it is equally likely to be anything
between 1 and m.

We could calculate the mean directly via (16.4), but instead we will use a representation
described by Feller (1968), in exercise 15 of chapter IX. Let G1, . . . ,GJ+1 be iid Geometric(p)
random variables, with density P[G = u] = (1 − p)pu, u = 0, 1, 2, . . .. Then G1 + . . . +GK ∼

Negative Binomial(K,p), with density

P[G1 + . . . +GK = u] =

(
K+ u− 1
K− 1

)
(1 − p)Kpu, u = 0, 1, 2, . . . . (16.8)

Then we can express (16.3) as the conditional distribution

gJ(t | r) = P[G1 + . . . +Gr = t− r |G1 + . . . +GJ+1 = m− J]. (16.9)

Conditionally, the (G1, . . . ,GJ+1) are exchangeable given their sum, hence each element has
the same conditional expectation. Thus

E[Gi |G1 + . . . +GJ+1 = m− J] =
1

J+ 1
E[G1 + . . . +GJ+1 |G1 + . . . +GJ+1 = m− J]

=
m− J

J+ 1
. (16.10)

The mean of gJ(t | r) is found by multiplying (16.10) by r, then adding r, yielding (m+ 1)r/(J+
1) as in the first case of (16.5). If i 6∈ O, then since Yi is equally likely to be anything from 1 to
m, the mean is (m+ 1)/2, completing (16.5).
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(b) If i and j are both observed, since rank(yO) = zO, I[yi > yj] = I[zi > zj]. If neither are
observed, since the non-observed yi’s can be in any order, P[Yi > Yj] = 1

2 . Now suppose i ∈ O

and j 6∈ O. Conditioning on yi = t and zO, we know that of the t− 1 values smaller than
yi, r− 1 must be assigned to observed indices, where r = zi. Thus the other t− r are not
observed, i.e.,

E[
∑
k 6=O

I[Yi > Yk] |Yi = t, rank(YO) = zO] = t− r. (16.11)

Then by symmetry, for any given j 6∈ O,

E[I[Yi > Yj] |Yi = t, rank(YO) = zO] =
t− r

m− J
. (16.12)

Taking a further conditional expected value over Yi, we have

P[Yi > Yj | rank(YO) = zO] =
E[Yi | rank(YO) = zO] − r

m− J
=

r

J+ 1
, (16.13)

using the conditional mean from (16.5). The last case in (16.6) then follows from the third.

16.1 Ties, too

Here we consider ties as well as incomplete rankings, so that the observed rankings may have
ties. Thus in addition to O, the set of the indices of the J observed rankings, we have a pattern
of ties J = (J1, . . . , JL), where

∑
Jl = J and each Jl > 1. Thus there are Jl values of l among

the observed ranking, as in Chapter 12. Similarly, the pattern of ties for the observed ranks in
W is given by I = (I1, . . . , IK). The space of vectors is then

ZO = {z is 1×m |zO has pattern of ties J , zi = ∗ if i 6∈ O}. (16.14)

For z ∈ Z, we wish to find the corresponding set of compatible complete rankings. We can
do this in two steps: First find the 1× J rank vectors compatible with the observed part, zO,
then find the 1×m complete rankings compatible with each of those. That is, let

C∗(z0) = {uO ∈ PJ |uO is compatible with zO}, (16.15)

so that the complete rankings compatible with z is

C(z) = ∪uO∈C∗(zO)C
′(uO), where C ′(uO) = {y ∈ Pm | rank(yO) = uO}. (16.16)

Note that the sets C ′(uO) in the union are disjoint, since each has a distinct rank(yO), and
by symmetry they all have the same number of elements. Thus finding the average of any
function over all elements in C(z) is the same as finding the average of the individual averages
of the elements of the C ′(uO). For Y itself, we have

E[Y |Y ∈ C(z)] = 1
#C∗(zO)

∑
uO∈C∗(zO)

E[Y | rank(YO) = uO]. (16.17)
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As in (16.5), the inner expected value is given by

E[YO | rank(YO) = uO] =
m+ 1
J+ 1

uO and E[Yi | rank(YO) = uO] =
m+ 1

2
if i 6∈ O. (16.18)

As in (12.24), averaging the uO over the C(zO) yields the midranks of zO. Also, for i 6∈ O, the
further average is still (m+ 1)/2. Thus

E[YO |Y ∈ C(z)] = m+ 1
J+ 1

rank(zO) and E[Yi |Y ∈ C(z)] =
m+ 1

2
if i 6∈ O. (16.19)

A similar approach can be used for I[Yi > Yj], so that

P[Yi > Yj |Y ∈ C(z)] =
1

#C∗(zO)

∑
uO∈C∗(zO)

P[Yi > Yj | rank(YO) = uO]. (16.20)

Here, the inner probability is as in (16.6) with uO instead of z. If i, j ∈ O, then taking further
expected value over C∗(zO) is I[zi > zj] if zi and zj are not tied, and 1

2 otherwise. If i, j 6∈ O,
then the mean will stay 1

2 . If i ∈ O and j 6∈ O, the further expected value of Ui is the midrank,
divided by J+ 1. Likewise for the final case. Thus

P[Yi > Yj |Y ∈ C(z)] =



I[zi > zj] if i, j ∈ O, zi 6= zj,
1
2 if i, j ∈ O, zi = zj,
1
2 if i, j 6∈ O,
rank(z)i
J+1 if i ∈ O, j 6∈ O,

1 −
rank(z)j
J+1 if i 6∈ O, j ∈ O,

(16.21)

where
rank(z)O = rank(zO) and rank(z)i = ∗ if i 6∈ O. (16.22)

16.2 Null distribution
There are several possible null distributions that are reasonable to consider for cases in which
one or both rank vectors W and Z have missing values. Suppose the numbers of observed
rankings in W is I, and in Z is J. Some choices to make include whether to consider one of
the vectors fixed, or both random; and if random, whether the observed indices are fixed or
random. A further choice would be to have the I and J random, but we will not deal with that
possibility. Also, the overall assumption is that whether a ranking is missing is independent
of the rank it would have been assigned if not missing.

Suppose Z is not fixed, and let O ⊂ {1, . . . ,m} be the observed indices, with #O = J. Then
two possible distributions for Z depending on whether we condition on the observed indices
are

Conditionally : Z ∼ Uniform(ZO);
Unconditionally : Z ∼ Uniform(∪{ZO ′ | O

′ ⊂ {1, . . . ,m}, #O ′ = J})
⇔ Z ∼ Uniform(Permutations(z)), (16.23)
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where z is any member of ZO. We define the two distributions similarly for W , where A is
the set of observed indices, and I = #A. Alvo & Cabilio (1995) define the null hypothesis H1
to be when I > J, W = w is fixed, and Z has the conditional distribution (although one could
remove the I > J condition); and H2 when one or both W and Z have the unconditional
distribution. Another possibility is that both W and Z have a conditional distribution, which
we will call H3.

We next treat the Spearman and Kendall distances separately.

16.3 Spearman

Recall from (13.1) that we can write Spearman’s distance adjusting for ties in terms of the
midranks. Similarly, we have here

dA
Spear(w, z) = µSpear(m) − 2

m∑
i=1

(r∗i − ν)(s
∗
i − ν), (16.24)

where ν = (m+ 1)/2 again, and the analogs of the midranks are as in (16.19):

r∗ = E[X |X ∈ C(w)] =
m+ 1
I+ 1

r and s∗ = E[Y |Y ∈ C(z)] = m+ 1
J+ 1

s. (16.25)

We chose the factors so that

rA = rank(wA) and sO = rank(zO), (16.26)

the midranks of the respective vector of observed ranks. For the unobserved ranks, we have

ri = νI ≡
I+ 1

2
, i 6∈ A and si = νJ ≡

J+ 1
2

, i 6∈ O. (16.27)

Thus the summation part of (16.24) is

m∑
i=1

(r∗i − ν)(s
∗
i − ν) =

(m+ 1)2

(I+ 1)(J+ 1)

m∑
i=1

(ri − νI)(si − νJ). (16.28)

Note that for any index i, the summand is zero unless at both of the vectors’ ranks are ob-
served, i.e., unless i ∈ A∩O.

Turn to the mean. If either vector has the unconditional distribution, the mean of (16.24) is
µSpear(m), by definition of averaging. If Z has the conditional distribution, then the observed
vector

SO ∼ Uniform(Permutations(sO)), (16.29)

which has mean νJ1J, hence E[Si] = νJ for all i. Thus again the adjusted distance has the
usual mean. That is, if either vector has either the conditional or unconditional distribution,
the mean is of the distance is µSpear(m).
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The variance, and higher moments, depend on the specific assumed distribution. Consider
hypothesis H1, where W = w, and Z has the conditional distribution. Then the set of
observed indices for Z is fixed at O. Now

Var

[
m∑
i=1

(ri − νI)(Si − νJ)

]
= Var

[∑
i∈O

(ri − νI)(Si − νJ)

]

=

∑
i∈O(ri − rO)

2∑
i∈O(si − νJ)

2

J− 1
, where rO =

∑
i∈O ri
J

, (16.30)

the final step following as in (13.35), but with the 1× J vector SO in (16.29). Note that the
ri and si are not treated the same, since we are dealing with the indices observed by the z,
which in general do not coincide with those observed by the w.

For H2, we assume that W = w again, but Z has the unconditional distribution as in
(16.23). Then the entire 1×m vector S ∼ Uniform(Permutations(s)), hence

Var

[
m∑
i=1

(ri − νI)(Si − νJ)

]
=

∑m
i=1(ri − νI)

2∑m
i=1(si − νJ)

2

m− 1

=

∑
i∈A(ri − νI)

2∑
i∈O(si − νJ)

2

m− 1
. (16.31)

Finally, turn to H3, where RA and SO are independent, with distribution (16.29) for the
latter, and Uniform(Permutations(rO)) for the former. Then

Var

[
m∑
i=1

(Ri − νI)(Si − νJ)

]
= E

[
Var

[
m∑
i=1

(Ri − νI)(Si − νJ) |R

]]

= E

[∑
i∈O(Ri − RO)

2∑
i∈O(si − νJ)

2

J− 1

]
, (16.32)

where the first equality follows since the conditional expected value is identically zero, and the
second equality is from (16.30). Consider RO, which has (potentially) some elements which
are observed, and some which are not, hence equal νI. We can rearrange the indices so that
the observed come first in the vector. That is, with H = #(A∩O),

RO = (R1, . . . ,RH,νI, . . . ,νI), with J−H of the ν ′Is. (16.33)

Then ∑
i∈O

(Ri − νI)
2 =
∑
i∈O

(Ri − RO)
2 + J(RO − νI)

2. (16.34)

Since

RO =

∑H
i=1 Ri + (J−H)νI

J
=
H

J
RH +

J−H

J
νI, where RH =

∑H
i=1 Ri
H

, (16.35)

(16.34) implies that ∑
i∈O

(Ri − RO)
2 =
∑
i∈O

(Ri − νI)
2 −

H2

J
(RH − νI)

2. (16.36)
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Taking expectations, note that the final term involves Var[RH], which is the sample variance
of a mean of H observations taken without replacement from the I observed Ri’s, hence with
the finite sample correction,

Var[RH] =
I−H

I− 1
Var[R1]

H
. (16.37)

Thus

E

[∑
i∈O

(Ri − RO)
2

]
= HVar[R1] −

H2

J

I−H

I− 1
Var[R1]

H

= H

(
1 −

I−H

J(I− 1)

)
Var[R1]. (16.38)

With (16.32), and some manipulations, we obtain

Var

[
m∑
i=1

(Ri − νI)(Si − νJ)

]
= H

(
1 −

I−H

J(I− 1)

) ∑
i∈A(ri − νI)

2

I

∑
i∈O(si − νJ)

2

J− 1

=
H

IJ

(
1 +

H− 1
(I− 1)(J− 1)

)∑
i∈A

(ri − νI)
2
∑
i∈O

(si − νJ)
2. (16.39)

Let

const = 4
(

(m+ 1)2

(I+ 1)(J+ 1)

)2

. (16.40)

Then

Hypothesis Var[dA
Spear(W ,Z)]

H1
const
J−1
∑
i∈O(ri − rO)

2∑
i∈O(si − νJ)

2

H ′1
const
I−1
∑
i∈A(ri − νI)

2∑
i∈A(si − sA)

2

H2
const
m−1

∑
i∈A(ri − νI)

2∑
i∈O(si − νJ)

2

H3 const HIJ
(

1 + H−1
(I−1)(J−1)

) ∑
i∈A(ri − νI)

2∑
i∈O(si − νJ)

2

(16.41)

Note that for H1 and H ′1, the variance depends on values of the observed ranks in the
fixed vector corresponding to the observed ranks in the random vector (those with indices
in A ∩ O), while for H3 the variance depends on just the number of ranks observed in both
vectors simultaneously, #(A∩O). For H2, the variance does not depend on the overlap at all.

Turn to asymptotic normality. Yu, Lam, & Alvo (2016) prove asymptotic normality under
conditions for hypotheses H1 and H2. We present these results here, with slightly modified
conditions, starting with H1. We do not have an asymptotic result for H3.

Theorem 16.2. Suppose W = w fixed and Z ∼ Uniform(ZO), and let Ix = max{Ik} and Jz =
max{Jl}. If ∑

i∈O(ri − rO)
2

I2
J− Jz
J
−→∞, where rO =

1
J

∑
i∈O

ri, (16.42)



DRAFT

212 CHAPTER 16. INCOMPLETE RANKINGS

then
dA

Spear(w,Z) − µSpear(m)√
Var[dA

Spear(w,Z)]
−→D N(0, 1), (16.43)

where the variance is given in the H1 line of (16.41).
If there are no ties in the w, then condition (16.42) is implied by

H3

I2
J− Jz
J
−→∞. (16.44)

Alternatively, if the ri for i ∈ O are asymptotically “similar” to the entire set of ri’s, in the sense that

lim inf
∑
i∈O(ri − rO)

2/J∑m
i=1(ri − νI)

2/m
> 0, (16.45)

then condition (16.42) is implied by

(I− Ix)(J− Jz)

m
−→∞. (16.46)

We further note that a sufficient condition for (16.44) to hold is thatH→∞, lim infH/I > 0,
and lim sup Jz/J < 1.

Now to H2. The result is the same whether W is fixed and Z has the unconditional
distribution, Z is fixed and W has the unconditional distribution, or they are independent
and both have the unconditional distributions.

Theorem 16.3. Suppose W = w is fixed and Z ∼ Uniform(Permutations(z)). Then

(I− Iz)(J− Jx)

m
−→∞ (16.47)

implies (16.43), where now the variance is given in the H2 line of (16.41).

Proof of Theorem 16.2. By (16.24) and (16.28), the asymptotic normality of Spearman’s distance
is equivalent to the asymptotic distribution of

∑
(ri − νI)(Si − νJ). By (16.27), many of the

summands are zero, hence we just need to prove the asymptotic normality of∑
i∈O

(ri − νI)(Si − νj), SO ∼ Uniform(Permutations(sO)). (16.48)

Now the Hoeffding (1951) permutation central limit theorem shows that (16.48) is asymptoti-
cally normal if

1
J

∑
i∈O(ri − rO)

2

max{(ri − rO)2 | i ∈ O}

∑
i∈O(si − νJ)

2

max{(si − νJ)2 | i ∈ O}
−→∞. (16.49)

See (16.30) for rO.
As in (13.60), but for J , the ratio based on the s is asymptotically equivalent to J− Jz. Since

all the ri are between 1 and I,

max{(ri − rO)2 | i ∈ O} 6 I2. (16.50)
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Thus the term based on the r is bounded from below by
∑
i∈O(ri − rO)

2/I2, implying (16.43).
For the special case that there are no ties in the w, the

∑
i∈O(ri − rO)

2 is smallest if the H
observed values of ri for i ∈ O are bunched around νI = (I+ 1)/2, in which case the sum of
squares is asymptotically H3/12. More precisely, if we let a = bH/2c, b = dH/2e, α = bνIc,
and β = dνIe, we have

∑
i∈A∩O

(ri − νI)
2 >

α−1∑
i=α−a+1

(i−α)2 +

β+b−1∑
i=β+1

(i−β)2

=

a−1∑
j=1

j2 +

b−1∑
j=1

j2

=
(a− 1)a(2a− 1) + (b− 1)b(2b− 1)

6

≈ H
3

12
. (16.51)

Thus (16.42) turns into (16.44).
Finally, suppose (16.45) holds, so that (16.42) holds if∑m

i=1(ri − νI)
2

I2
J− Jz
m

−→∞. (16.52)

But ri−νI = 0 if i 6∈ A, and using (13.60) again shows that
∑
i∈A(ri−νI)

2/I2 is asymptotically
equivalent to I− Ix. Thus (16.46) implies (16.42).

Proof of Theorem 16.3. Using Hoeffding’s theorem again, but on the entire vector, since S ∼

Uniform(Permutations(s)), asymptotical normality follows from

1
m

∑m
i=1(ri − νI)

2

max{(ri − νI)2 | i = 1, . . . ,m}

∑m
i=1(si − νJ)

2

max{(si − νJ)2 | i = 1, . . . ,m}
−→∞. (16.53)

SInce ri − νI = 0 if i 6∈ A and si − νJ = 0 if i 6∈ O, the two ratios in (16.53) are asymptotically
equivalent to I− Ix and J− Jz, respectively, yielding the theorem.

16.4 Kendall

We start with the result for hypothesis H1, so that W = w is fixed, and Z has the conditional
distribution (16.23). This hypothesis fixes the observed indices for Z, hence we can reorder
the indices so that the observed ones for Z are the first J, i.e, O = {1, . . . , J}. Then Kendall’s
distance, minus its mean, adjusted for the incomplete data and possible ties, can be written

dA
Ken(w, z) − µKen(m) = −2

∑∑
16i<j6m

aijdij, (16.54)
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where for i 6= j, using (16.6),

aij = E[I[Xi > Xj] |X ∈ C(w)] −
1
2

,

dij = E[I[Yi > Yj] |Y ∈ C(z)] −
1
2
=


I[zi > zj] +

1
2 I[zi = zj] −

1
2 if 1 6 i < j 6 J

1
J+1(si − νJ) if 1 6 i 6 J < j 6 m

0 if J < i < j 6 m
,

(16.55)

and we set aii = dii = 0. As in (16.25) and (16.26), we let sO denote rank(zO), the midranks of
the observed elements of z.

Thus we can write

dA
Ken(w, z) − µKen(m) = −2

∑∑
16i<j6J

aijdij +
1

J+ 1

J∑
i=1

(si − νJ)

m∑
j=J+1

aij


= −2

(
a∗d∗ ′ +

1
J+ 1

u
(2)
O (sO − νJ1J)

′
)

. (16.56)

Here, a∗ and d∗ are the 1×
(
J
2

)
vectors with elements 1 6 i < j 6 J, arranged as

a∗ = (a12, . . . ,a1J,a23, . . . ,a2J, . . . ,aJ−1,J) (16.57)

and d∗ similarly; and we define u(1)
O and u(2)

O to be 1× J vectors, u(k)
O = (u

(k)
1 , . . . ,u(k)J ), with

u
(1)
i =

J∑
j=1

aij and u
(2)
i =

m∑
j=J+1

aij. (16.58)

Theorem 16.4. Suppose hypothesis H1 holds, so that W = w is fixed, and Z has the conditional
distribution (16.23), ZO ∼ Uniform(Permutations(zO)). Then

σ2
Ken(m) ≡ Var[dA

Ken(w,Z)] =
1
3

(
ωJ
J+ 1

‖r∗O − r∗O1J‖
2 + ‖a∗‖2(1 − 3γ2 + 2γ3)

+3 ‖u(1)
O ‖

2γ2 − γ3

J+ 1
−

ωJ
(J+ 1)2 ‖u

(2)
O − u

(2)
O 1J‖2

)
, (16.59)

where

γc =

L∑
b=1

(Jb)c
(J)c

, r∗O =

∑J
i=1 r

∗
i

J
, u(2)O =

∑J
i=1 u

(2)
i

J
, (16.60)

and

ωJ =
J3 −
∑L
b=1 J

3
b

J(J− 1)
= 3(1 − γ2) + (J− 2)(1 − γ3). (16.61)

If there are no ties in the zO, then

σ2
Ken(m) =

1
3

(
‖r∗O − r∗O1J‖

2 + ‖a∗‖2 −
1

J+ 1
‖u(2)

O − u
(2)
O 1J‖2

)
. (16.62)
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The result for asymptotic normality is the same as for Spearman’s distance in Theorem
16.2.

Theorem 16.5. Consider the same conditions as in Theorem 16.4. If furthermore∑
i∈O(ri − rO)

2

I2
J− Jz
J
−→∞, (16.63)

then
dA

Ken(w,Z) − µKen(m)√
Var[dA

Ken(w,Z)]
−→D N(0, 1). (16.64)

The conditions (16.44) through (16.46) for Spearman are thus also relevant for Kendall.
The formulas for the variance for hypotheses H2 and H3 are too unwieldy to present in a few
lines, so we give them Sections 16.4.3 and 16.4.2, respectively. The asymptotic normality for
H2 is the same as for Spearman in Theorem 16.3.

Theorem 16.6. Suppose W = w is fixed and Z ∼ Uniform(Permutations(z)). Then

(I− Iz)(J− Jx)

m
−→∞ (16.65)

implies (16.64), where now the variance is given in Section 16.4.3.

16.4.1 Proofs

Proof of Theorem 16.4. Recall that we are taking O = {1, . . . , J}, and note that Kendall’s distance
in (16.56) depends on just the first J values, zO. Thus d∗ and sO can be found using J-
dimensional vectors. Let Y ∗O ∼ Uniform(PJ), and C(zO) be the vectors in PJ compatible with
zO. Then

dij = E[I[Y
∗
i > Y

∗
j ] |Y

∗
O ∈ C(zO)] − 1

2 , 1 6 i, j 6 J, and sO = E[Y ∗O |Y ∗O ∈ C(zO)]. (16.66)

We first find the variances and covariances for D∗ and SO.
Suppose the indices 1 6 i, j,k, l,6 J are distinct. Now

Var[Dij] = Var[E[I[Y
∗
i > Y

∗
j ] |Y

∗
O ∈ C(z)]]

= Var[I[Y∗i > Y
∗
j ]] − E[Var[I[Y

∗
i > Y

∗
j ] |Y

∗
O ∈ C(z)]]. (16.67)

For fixed z, if zi 6= zj, then I[Y∗i > Y
∗
j ] is fixed at I[zi > zj] for any compatible Y ∗O . If zi = zj,

then Y∗i and Y∗j are equally likely to be in either order. Thus

Var[I[Y∗i > Y
∗
j ] |Y

∗
O ∈ C(z)] =

1
4
I[zi = zj]. (16.68)

Now γ2 ≡ E[I[Zi = Zj]] in (16.60) is the chance both Zi and Zj are chosen from one of the
groups defined by the ties, so that

Var[Dij] =
1
4
(1 − γ2). (16.69)
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Similarly for Cov[Dij,Dik], where now at least one of I[Y∗i > Y
∗
j ] and I[Y∗i > Y

∗
k] is conditionally

fixed unless Zi = Zj = Zk, hence

Cov[Dij,Dik] =
1

12
(1 − γ3). (16.70)

For Cov[Dij,Dkl], at least one of I[Y∗i > Y
∗
j ] and I[Y∗k > Y

∗
l ] is conditionally fixed unless Zi = Zj

and Zk = Zl, in which case the conditional covariance is zero anyway. Let ΓJ be the
(
J
2

)
× J,

with rows indexed by (ij), 1 6 i < j 6 J, ordered as in (16.57), and with elements

(ΓJ)(ij)k =


1 if i = k
−1 if j = k
0 otherwise

. (16.71)

A little manipulation then shows that

Cov[D∗] =
1

12

(
I(J2)

(1 − 3γ2 + 2γ3) +ΓJΓ
′
J (1 − γ3)

)
. (16.72)

For SO, write

J∑
j=1

dij = E

 ∑
16j6J,j 6=i

I[Y∗i > Y
∗
j ] |Y

∗
O ∈ C(zO)

−
J− 1

2

= E [Y∗i − 1 |Y ∗O ∈ C(zO)] −
J− 1

2
= si − νJ, (16.73)

which, because dij = −dji, lets us write

SO − νJ1J =D
∗ΓJ. (16.74)

Thus

Cov[D∗,SO] = Cov[D
∗]ΓJ =

1
12
(
ΓJ(1 − 3γ2 + 2γ3) +ΓJΓ

′
JΓJ(1 − γ3)

)
=
ωJ
12
ΓJ, (16.75)

since Γ ′JΓJ = JHJ and ΓJHJ = ΓJ, and we can show that

1 − 3γ2 + 2γ3 + J(1 − γ3) =
J3 −
∑L
b=1 J

3
b

J(J− 1)
= ωJ (16.76)

in (16.61). We now can express the covariance of SO as

Cov[SO] = Γ
′
J Cov[D

∗]ΓJ =
JωJ
12

HJ. (16.77)
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Then using (16.56), we have

σ2
Ken(m) = 4

(
a∗Cov[D∗]a∗

′
+

2
J+ 1

a∗Cov[D∗,SO]u
(2) ′ +

1
(J+ 1)2 u

(2)Cov[SO]u
(2) ′
)

=
1
3

(
‖a∗‖2(1 − 3γ2 + 2γ3) + a

∗ΓJΓ
′
Ja
∗ ′(1 − γ3)

+
2ωJ
J+ 1

a∗ΓJu
(2) ′
O +

JωJ
(J+ 1)2 u

(2)
O HJu

(2) ′
O

)
=

1
3

(
‖a∗‖2(1 − 3γ2 + 2γ3) + ‖u

(1)
O ‖

2(1 − γ3)

+
2ωJ
J+ 1

u
(1)
O u

(2) ′
O +

JωJ
(J+ 1)2 u

(2)
O HJu

(2) ′
O

)
. (16.78)

since by (16.58), u(1)
O = a∗ΓJ. We also have, for 1 6 i 6 J,

u
(1)
i + u

(2)
i =

m∑
j=1

aij = E

∑
j 6=i
I[Xi > Xj] |X ∈ C(w)

−
m− 1

2

= E [Xi − 1 |X ∈ C(w)] −
m− 1

2
= r∗i − νm. (16.79)

Since ΓJHJ = ΓJ, the sample mean of the u(1)i is zero, hence

‖u(1)
O ‖

2 + 2u(1)
O u

(2) ′
O +u

(2)
O HJu

(2) ′
O = (u

(1)
O +u

(2)
O )HJ(u

(1)
O +u

(2)
O ) ′ = ‖r∗O − r∗O1J‖

2. (16.80)

Now we add and subtract ωJ/(J+ 1) to the coefficients of ‖u(1)‖2 and u(2)
O HJu

(2) ′
O in (16.78),

and use (16.76) to obtain (16.59).

If there are no ties in ZO, then γ2 = γ3 = 0, and since Jb ≡ 1, ωJ = J + 1, yielding
(16.62).

Proof of Theorem 16.5. We proceed as we did for complete rankings, obtaining the asymptotic
result for Kendall from that for Spearman, where we used Lemma 15.2. Thus we first find the
covariance of Kendall and Spearman. Using (16.24), and noting that s∗i = (m+ 1)si/(J+ 1),
we can write

dA
Spear(w, z) − µSpear(m) = −2

m+ 1
J+ 1

(r∗O − ν1J)(sO − νJ1J). (16.81)
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Thus with Kendall’s distance as in (16.56), we have that the covariance is

Cov[dA
Spear(w,Z),dA

Ken(w,Z)] = 4
m+ 1
J+ 1

(
Cov[a∗D∗

′
, (r∗O − ν1J)SO]

+
1

J+ 1
Cov[u

(2)
O SO, (r∗O − ν1J)SO]

)
=
ωJ
3
m+ 1
J+ 1

(
a∗ΓJ(r

∗
O − ν1J)

′ +
J

J+ 1
u
(2)
O HJ(r

∗
O − ν1J)

)
=
ωJ
3
m+ 1
J+ 1

(
u
(1)
O (r∗O − r∗O1J)

′ +
J

J+ 1
u
(2)
O HJ(r

∗
O − ν1J)

)
=
ωJ
3
m+ 1
J+ 1

(
‖r∗O − r∗O1J‖

2 −
1

J+ 1
u
(2)
O HJ(r

∗
O − ν1J)

)
. (16.82)

From (16.41), we have

σ2
Spear(m) =

4
J− 1

(m+ 1)2

(J+ 1)2 ‖r
∗
O − r∗O1J‖

2‖sO − νJ1J‖2

=
ωJ
3
J(m+ 1)2

(J+ 1)2 ‖r
∗
O − r∗O1J‖

2. (16.83)

For constant κJ, the above with (16.59) gives

∆m ≡ E
[(
κJ(d

A
Spear(w,Z) − µSpear(m)) − (dA

Ken(w,Z) − µKen(m))
)2
]

= κ2
J

ωJ
3
J(m+ 1)2

(J+ 1)2 ‖r
∗
O − r∗O1J‖

2 − 2κJ
ωJ
3
m+ 1
J+ 1

(
‖r∗O − r∗O1J‖

2 −
1

J+ 1
u
(2)
O HJ(r

∗
O − ν1J)

)
+

1
3

(
‖a∗‖2(1 − 3γ2 + 2γ3) + 3 ‖u(1)

O ‖
2γ2 − γ3

J+ 1

+
ωJ
J+ 1

(
‖r∗O − r∗O1J‖

2 −
1

J+ 1
u
(2)
O HJu

(2) ′
O

))
. (16.84)

We collect the coefficients of ‖r∗O − r∗O1J‖2:

κ2
J

ωJ
3
J(m+ 1)2

(J+ 1)2 − 2κJ
ωJ
3
m+ 1
J+ 1

+
ωJ
3

1
J+ 1

=
ωJ
3

1
J+ 1

(
κ2
J

J(m+ 1)2

J+ 1
− 2κJ(m+ 1) + 1

)
.

(16.85)
We can set the coefficient to zero by taking

κJ =
1

m+ 1
J+ 1
J

(
1 −

1√
J

)
. (16.86)

With that choice,

∆m =
2
3

(
1 −

1√
J

)
ωJ

J(J+ 1)
u
(2)
O (r∗O − r∗O1J)

′ +
1
3
‖a∗‖2(1 − 3γ2 + 2γ3)

+ ‖u(1)
O ‖

2γ2 − γ3

J+ 1
−

1
3

ωJ
(J+ 1)2u

(2)
O HJu

(2) ′
O . (16.87)
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Let
βm = κJσSpear(m) and αm =

σKen(m)

βm
, (16.88)

so that by (16.84), we obtain

∆m

β2
m

= E

(dA
Spear(w,Z) − µSpear(m)

σSpear(m)
−αm

dA
Ken(w,Z) − µKen(m)

σKen(m)

)2
 . (16.89)

Then using (16.86) and (16.83),

β2
m =

1
(m+ 1)2

(J+ 1)2

J2

(
1 −

1√
J

)2
ωJ
3
J(m+ 1)2

(J+ 1)2 ‖r
∗
O − r∗O1J‖

2

=
1
3

(
1 −

1√
J

)2

‖r∗O − r∗O1J‖
2 J

3 −
∑L
b=1 J

3
b

J2(J− 1)
(16.90)

As in (13.59),

J2(J− Jz) 6 J
3 −

L∑
b=1

J3b 6 3 J2(J− Jz). (16.91)

By assumption (16.66), since r∗i = (m+ 1)ri/(I+ 1),

‖r∗O − r∗O1J‖2

m2
J− Jz
J
−→∞. (16.92)

Then
β2
m

m2 −→∞. (16.93)

We wish to show that ∆m in (16.87) is of order m2. By (16.69), we have 0 6 γc 6 1, hence
by (16.76), ωJ = 3(1 − γ2) + (J− 2)(1 − γ3) 6 J+ 1. By (16.55), we have that each |aij| 6

1
2 .

Now a∗ has
(
J
2

)
of the aij’s, and u(1)i , u(2)

O , and r∗i are sums of, respectively, J,m− J, and m of
them, and the u(k)

O and r∗O have J elements, hence

‖a∗‖2 6
J(J− 1)

8
,

‖u(1)
O ‖

2 6
J3

4
,

u
(2)
O HJu

(2) ′
O 6

J(m− J)2

4
, and

u
(2)
O (r∗O − r∗O1J)

′ 6
Jm(m− J)

4
. (16.94)

Thus

∆m 6
2
3J
u
(2)
O (r∗O − r∗O1J)

′ + 2 ‖a∗‖2 +
2

J+ 1
‖u(1)

O ‖
2 +

1
3

1
J+ 1

u
(2)
O HJu

(2) ′
O

6
m(m− J)

6
+
J(J− 1)

4
+
J2

2
+

(m− J)2

12
6 m2. (16.95)
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Hence by (16.93), ∆m/β2
m → 0. Theorem 16.2 states that (16.92) implies normality for

Spearman’s distance, hence (16.89) shows that

αm
dA

Ken(w,Z) − µKen(m)

σKen(m)
−→D N(0, 1). (16.96)

Now using the inequalities in (16.94) and above, and (16.83), we can write

σ2
Ken(m) =

J+ 1
J(m+ 1)2 σ

2
Spear(m) + δm, (16.97)

where

δm =
1
3

(
‖a∗‖2(1 − 3γ2 + 2γ3) + 3 ‖u(1)

O ‖
2γ2 − γ3

J+ 1
−

ωJ
(J+ 1)2 u

(2)
O HJu

(2) ′
O

)
6
J(J− 1)

4
+
J2

2
+

(m− J)2

12
6 m2. (16.98)

Thus

α2
m =

σ2
Ken(m)

β2
m

=
J+ 1

J(m+ 1)2
1
κ2
J

+
δm

β2
m

=
J

J+ 1

(
1 −

1√
J

)−2

+
δm

β2
m

−→ 1. (16.99)

The conclusion (16.64) then follows from (16.97).

Proof of Theorem 16.6. Consider (15.20), but with w replaced by X , so that X and Y are in-
dependent and Uniform(Pm). Then the bound on the right-hand side is m(m− 1)/12. Using
Jensen’s inequality as in (15.21), we can replace the distances with those in the theorem, thus
achieving the same bound. As we did for the H1 case in (16.88), we set

βm = κmσSpear(m) and αm =
σKen(m)

βm
, where κm =

1
m+ 1 +

√
m+ 1

. (16.100)

Then to show that the asymptotic normality of Spearman’s distance under assumption (16.47)
given in Theorem 16.3 implies the same for Kendall, we need to show that

β2
m

m2 −→∞ and αm −→ 1. (16.101)

From (16.41) for H2, we have

β2
m =

4
(m+ 1 +

√
m+ 1)2

(
(m+ 1)2

(I+ 1)(J+ 1)

)2 1
m− 1

∑
i∈A

(ri − νI)
2
∑
i∈O

(si − νJ)
2. (16.102)
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16.4.2 The variance for Kendall under H3

Suppose both W and Z have the conditional distribution, so that A and O are fixed, WA ∼

Uniform(Permutations(wA)), ZO ∼ Uniform(Permutations(zO)), and WA and ZO are inde-
pendent. We know the variance if W is fixed, and

Var[dA
Ken(W ,Z)] = Var[E[dA

Ken(W ,Z) |W = w]] + E[Var[dA
Ken(W ,Z) |W = w]]

= E[Var[dA
Ken(w,Z)], (16.103)

since the conditional expected value is a constant. Thus by (16.59), we need the expected
value over Z of the quantities ‖R∗O − R

∗
O1J‖2, A∗, ‖U (1)

O ‖
2, and ‖U (2)

O −U
(2)
O 1J‖2. We will take

O = {1, . . . , J}, and as in (16.33), the first H of the wi’s to be the observed rankings among the
first J.

Using (16.38), since r∗i = (m+ 1)ri/(I+ 1),

E
[
‖R∗O − R

∗
O1J‖2

]
= H

(m+ 1)2

(I+ 1)2

(
1 −

I−H

J(I− 1)

)
Var[Ra]. (16.104)

Here, Ra is any Ri with i ∈ A. As in (16.55), E[A2
ij] depends on which of i and j are observed.

Using (16.69) for the first possibility, we have

E[A2
ij] =


1
4(1 − γ2) if i, j ∈ A,

1
(I+1)2 Var[Ra] if i ∈ A, j 6∈ A or i 6∈ A, j ∈ A

0 if i, j 6∈ A.

where as in (16.60), γc =
∑K
a=1(Ia)c/(I)c. Since in A∗ there are H observed ri’s and J −H

unobserved, and 1 6 i < j 6 J,

E[‖A∗‖2] =
H(H− 1)

8
(1 − γ2) +

H(J−H)

(I+ 1)2 Var[Ra]. (16.105)

The u(1) is defined in (16.58). Since the first H rankings are observed, and the next J−H
are not,

u
(1)
i =

J∑
j=1

aij =

{∑H
j=1 aij + (J−H)

( ri
I+1 −

1
2

)
if 1 6 i 6 H,

−
∑H
j=1
( rj
I+1 −

1
2

)
if H < i 6 J.

(16.106)

Since all the individual terms have mean zero, and the U(1)
1 , . . . ,U(1)

H are identically distributed,

E
[
‖U (1)

O ‖
2
]
= HVar

 H∑
j=2

A1j

+H(J−H)2 Var

[
R1

I+ 1
−

1
2

]

+ 2H(J−H)Cov

 H∑
j=2

A1j,
R1

I+ 1
−

1
2

+ (J−H)Var

 H∑
j=1

(
Rj

I+ 1
−

1
2

) . (16.107)
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Let A† be the 1×
(
I
2

)
vector with elements Aij, i, j ∈ A and i < j, arranged in a vector like

(16.57). Then as in (16.72),

Cov[A†] =
1

12

(
I(I2)

(1 − 3γ2 + 2γ3) +ΓIΓ
′
I (1 − γ3)

)
, (16.108)

and

Var

 H∑
j=2

A1j

 =
1

12

(
1H−1,0(I2)−H+1

)
Cov[A†]

(
1H−1,0(I2)−H+1

) ′
=

1
12

((H− 1)(1 − 3γ2 + 2γ3) +H(H− 1)(1 − γ3)). (16.109)

Using (16.37), we have

Var

 H∑
j=1

(
Rj

I+ 1
−

1
2

) =
H2

(I+ 1)2 Var[RH] =
H(I−H)

(I+ 1)2(I− 1)
Var[R1]. (16.110)

For the covariance, as in (16.75),

Cov[D†,RA] =
ωI
12
ΓI =

Var[Ra]

I− 1
ΓI, ωI = 1 − 3γ2 + 2γ3 + I(1 − γ3), (16.111)

hence,

Cov

 H∑
j=2

A1j,
R1

I+ 1
−

1
2

 =
H− 1

(I+ 1)(I− 1)
Var[R1]. (16.112)

Using (16.109) through (16.112) in (16.107), and simplifying, we obtain

E
[
‖U (1)

O ‖
2
]
=
H(H− 1)

12
(3(1 − γ2) + (H− 2)(1 − γ3))

+
H(J−H)(H(I+ 2) + (I− 1)(J− 1) − 3)

(I+ 1)2(I− 1)
Var[R1]. (16.113)

Turn to U (2)
O , whose elements are given in (16.58). We will take the elements of w to be

arranged so that A∩O = {1, . . . ,H} as before, and A∩Oc = {J+ 1, . . . , J+H}, where H = I−H.
Also, let J = m− J. Then similar to (16.106), we have

u
(2)
i =

m∑
j=J+1

aij =

{∑J+H
j=J+1 aij + (J−H)

( ri
I+1 −

1
2

)
if 1 6 i 6 H,

−
∑J+H
j=J+1

( rj
I+1 −

1
2

)
if H < i 6 J.

(16.114)

Thus

E[‖U (2)
O ‖

2 = HVar

 J+H∑
j=J+1

A1j

+H(J−H)2 Var

[
R1

I+ 1
−

1
2

]

+ 2H(J−H)Cov

 J+H∑
j=J+1

A1j,
R1

I+ 1
−

1
2

+ (J−H)Var

 J+H∑
j=J+1

(
Rj

I+ 1
−

1
2

) . (16.115)
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As in (16.109), but with H instead of H− 1,

Var

 J+H∑
j=J+1

A1j

 =
H

12
(H+ 2 − 3γ2 − (H− 1)γ3). (16.116)

Likewise for the covariance as in (16.112),

Cov

 J+H∑
j=J+1

A1j,
R1

I+ 1
−

1
2

 =
H

(I+ 1)(I− 1)
Var[R1]. (16.117)

The final variance on the right-hand side of (16.115) is the same as, but with H in place of H.
Thus we now have

E[‖U (2)
O ‖

2] =
HH (H+ 2 − 3γ2 − (H− 1)γ3)

12

+
H

I+ 1

(
(J−H)2

I+ 1
+ 2

(J−H)H

I− 1
+

(J−H)H

(I+ 1)(I− 1)

)
Var[R1]. (16.118)

Finally,

‖U (2)
O −U

(2)
O 1J‖2 = ‖U (2)

O ‖
2 − J(U

(2)
O )2. (16.119)

By (16.79), r∗i − νm = u
(1)
i + u

(2)
i , and the mean over O of the u(1)i is zero, hence using (16.35)

and (16.37),

E[(U
(2)
O )2] = Var[R

∗
O] =

(m+ 1)2

(I+ 1)2 Var[RO]

=
(m+ 1)2

(I+ 1)2
H2

J2
Var[RH]

=
(m+ 1)2

(I+ 1)2
H

J2
I−H

I− 1
Var[R1]. (16.120)

E[‖U (2)
O −U

(2)
O 1J‖2] =

HH (3(1 − γ2) + (H− 1)(1 − γ3))

12

+
H

I+ 1

(
(J−H)2

I+ 1
+ 2

(J−H)H

I− 1
+

(J−H)H

(I+ 1)(I− 1)
−

(m+ 1)2(I−H)

(I+ 1)(I− 1)J

)
Var[R1]. (16.121)

16.4.3 The variance for Kendall under H2

Now we take the expected value of the quantities in Section ?? over H, where H is can hyper-
geometric:

P[H = h] =

(
J
h

)(
m−J
I−h

)(
m
I

) =

(
I
h

)(
m−I
J−h

)(
m
J

) . (16.122)
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From (16.104),

E
[
E
[
‖R∗O − R

∗
O1J‖2 |H

]]
=

(m+ 1)2

(I+ 1)2

(
E[H] −

E[H(I−H)]

J(I− 1)

)
Var[Ra]

=
(m+ 1)2

(I+ 1)2

(
IJ

m
−
J(m− J)

J(I− 1)
I(I− 1)
m(m− 1)

)
Var[Ra]

=
(m+ 1)2

m− 1
I(J− 1)
(I+ 1)2 Var[Ra]

(16.123)

Next, from (16.105),

E[E[‖A∗‖2 |H]] =
E[H(H− 1)]

8
(1 − γ2) +

E[H(J−H)]

(I+ 1)2 Var[Ra]. (16.124)

Note that

E[(H)c] =
(I)c(J)c
(m)c

,

E[(H)a(J−H)b] =
(I)a(m− I)b(J)a+b

(m)a+b
, and

E[(H)a(I−H)b] =
(J)a(m− J)b(I)a+b

(m)a+b
.

(16.125)

Then

E[E[‖A∗‖2 |H]] =
I(J)2

(m)2

(
(I− 1)

8
(1 − γ2) +

(m− I)

(I+ 1)2 Var[Ra]

)
. (16.126)

Next, consider ‖U (1)
O ‖

2 in (16.113). We need another expected value:

E[H2(J−H)] = E[H(H− 1)(J−H)] + E[H(J−H)]

=
(I)2(J)3(m− I)

(m)3
+
I(J)2(m− I)

(m)2

(16.127)
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Then

E
[
E
[
‖U (1)

O ‖
2 |H

]]
=

(I)2(J)2

4(m)2
(1 − γ2) +

(I)3(J)3

12(m)3
(1 − γ3)

+

(
(I)2(J)3(I+ 2)(m− I)

(m)3
+
I(J)2(I+ 2)(m− I)

(m)2
+

(I)2(J)2(J− 1)(m− I)

(m)2
− 3

I(J)2(m− I)

(m)2

)
× Var[R1]

(I+ 1)2(I− 1)

=
(I)2(J)2

12(m)2

(
3(1 − γ2) +

(I− 2)(J− 2)
m− 2

(1 − γ3)

)
+

(
(J− 2)(I+ 2)

(m− 2)
+ J

)
(I)2(J)2(m− I)

(m)2(I+ 1)2(I− 1)
Var[R1]. (16.128)

For ‖U (2)
O ‖

2,

E[(H)a(I−H)b] =
(J)a(m− J)b(I)a+b

(m)a+b
. (16.129)

Next,

E[H(I−H)(J−H)] = (J− 1)E[H(I−H)] + E[(H)2(I−H)]

= (J− 1)
J(m− J)(I)2

(m)2
+

(J)2(m− J)(I)3

(m)3

=
(I)2(J)2(m− J)(m− I)

(m)3
; (16.130)

since J−H = (m− I) − (J−H),

E[H(I−H)(J−H)] = (m− I)E[H(I−H)] − E[H(I−H)(J−H)]

= (m− I)
J(m− J)(I)2

(m)2
−

(I)2(J)2(m− J)(m− I)

(m)3

=
(I)2J(m− J)(m− I)

(m)2

(
1 −

J− 1
m− 2

)
=

(I)2J(m− J)2(m− I)

(m)3
. (16.131)
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Also, using (16.125) and the idea in (16.127),

E[H(J−H)2] = (m− I)2 E[H] − 2(m− I)E[H(J−H)] + E[H(J−H)2]

= (m− I)2 IJ

m
− 2(m− I)2 I(J)2

(m)2
+
I(m− I)2(J)3

(m)3
+
I(m− I)(J)2

(m)2

=
(m− I)IJ

m

(
(m− I) − 2

(m− I)(J− 1)
m− 1

+
(m− I− 1)(J− 1)(J− 2)

(m− 1)(m− 2)
+
J− 1
m− 1

)
=

(m− I)IJ

m

(
(m− I)

(
1 − 2

J− 1
m− 1

+
(J− 1)(J− 2)

(m− 1)(m− 2)

)
−

(J− 1)(J− 2)
(m− 1)(m− 2)

+
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=
IJ(m− I)2(m− J)2

(m)3
+
I(J)2(m− I)(m− J)

(m)3
. (16.132)

Then from (16.121),
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=
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+
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1
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. (16.133)

For the variance of Kendall, we find the expected value of the variance in (16.59) over the
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H2 hypothesis.

Var[dA
Ken(w,Z)] =

1
3

(
ωJ
J+ 1

E
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∗
O1J‖2 |H
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+ E
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E
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(1 − 3γ2 + 2γ3)

+3E
[
E
[
‖U (1)
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2 |H
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J+ 1
−
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(J+ 1)2 E

[
E
[
‖U (2)

O −U
(2)
O 1J‖2 |H

]])
. (16.134)



DRAFT



DRAFT
References

Aldous, D., & Diaconis, P. (1999). Longest increasing subsequences: From patience sorting to
the baik-deift-johansson theorem. Bulletin of the American Mathematical Society, 36, 413–432.

Alvo, M., & Cabilio, P. (1991). On the balanced incomplete block design for rankings. Annals
of Statistics, 19, 1597 – 1613.

Alvo, M., & Cabilio, P. (1995). Rank correlation methods for missing data. The Canadian Journal
of Statistics / La Revue Canadienne de Statistique, 23(4), 345–358.

Alvo, M., & Yu, P. L. (2014). Statistical methods for ranking data. Springer Publishing Company,
Incorporated.

Baer, R. M., & Brock, P. (1968). Natural sorting over permutation spaces. Mathematics of
Computation, 22, 385–410.

Baik, J., Deift, P., & Johansson, K. (1999). On the distribution of the length of the longest in-
creasing subsequence of random permutations. Journal of the American Mathematical Society,
12(4), 1119–1178.

Best, D. J., & Roberts, D. E. (1975). Algorithm as 89: The upper tail probabilities of spearman’s
rho. Journal of the Royal Statistical Society. Series C (Applied Statistics), 24(3), 377–379.

Blinnikov, S., & Moessner, R. (1998). Expansions for nearly Gaussian distributions. Astron.
Astrophys. Suppl. Ser., 130, 193-205.

Bornemann, F. (2010). On the numerical evaluation of distributions in random matrix theory:
A review with an invitation to experimental mathematics. Markov Processes and Related
Fields, 16(4), 803–866.

Brown, B. (1988). Kendall’s tau and contingency tables. Australian Journal of Statistics, 30(3),
276-291.

Chiani, M. (2014). Distribution of the largest eigenvalue for real wishart and gaussian random
matrices and a simple approximation for the tracy-widom distribution. Journal of Multivari-
ate Analysis, 129, 69 – 81.

Cramér, H. (1946). Mathematical methods of statistics. Princeton University Press.

Critchlow, D. E. (1985). Metric methods for analyzing partially ranked data. New York.: Springer–
Verlag.

229



DRAFT

230 REFERENCES

David, S. T., Kendall, M. G., & Stuart, A. (1951). Some questions of distribution in the theory
of rank correlation. Biometrika, 38(1-2), 131-140.

Diaconis, P. (1988). Group representations in probability and statistics. Hayward, California.:
Institute of Mathematical Statistics.

Diaconis, P., & Gangolli, A. (1995). Rectangular arrays with fixed margins. In Discrete prob-
ability and algorithms. Proceedings of the workshops “Probability and algorithms” and “The finite
Markov chain renaissance” held at IMA, University of Minnesota, Minneapolis, MN, USA, 1993
(pp. 15–41). New York, NY: Springer-Verlag.

di Bruno, C. F. F. (1855). Sullo sviluppo delle funzioni. Annali di Scienze Matematiche e Fisiche,
6.

Esseen, C.-G. (1945). Fourier analysis of distribution functions. a mathematical study of the
laplace-gaussian law. Acta Mathematica, 77, 1–125.

Feller, W. (1968). An introduction to probability theory and its applications. (Vol. I). New York.:
Wiley.

Frame, J. S., de B. Robinson, G., & Thrall, R. M. (1954). The hook graphs of the symmetric
group. Canadian Journal of Mathematics, 6, 316–324.

Franklin, L. (1988). The complete exact null distribution of spearman’s rho for n = 12(1)18.
Journal of Statistical Computation and Simulation, 29(3), 578-580.

Gibbons, J., & Chakraborti, S. (2010). Nonparametric statistical inference (Fifth ed.). CRC Press.

Good, I. J. (1976). On the application of symmetric dirichlet distributions and their mixtures
to contingency tables. The Annals of Statistics, 4(6), 1159–1189.

Greene, C., Nijenhuis, A., & Wilf, H. S. (1979). A probabilistic proof of a formula for the
number of young tableaux of a given shape. Advances in Mathematics, 31(1), 104 - 109.

Hammersley, J. M. (1972). A few seedlings of research. In Proceedings of the sixth berkeley
symposium on mathematical statistics and probability, volume 1: Theory of statistics (pp. 345–394).
Berkeley, Calif.: University of California Press.

Henery, R. J. (1981). Permutation probabilities as models for horse races. Journal of the Royal
Statistical Society B, 43, 86 – 91.

Herstein, I. N. (1964). Topics in algebra. Massachusetts.: Blaisdell.

Hoeffding, W. (1951). A combinatorial central limit theorem. Annals of Mathematical Statistics,
22, 558 – 566.

Hotelling, H., & Pabst, M. R. (1936, 03). Rank correlation and tests of significance involving
no assumption of normality. The Annals of Mathematical Statistics, 7(1), 29–43.

Johnstone, I. M., Ma, Z., Perry, P. O., & Shahram, M. (2014). Rmtstat: Distributions, statistics
and tests derived from random matrix theory [Computer software manual]. (R package
version 0.3)



DRAFT

REFERENCES 231

Jonckheere, A. R. (1954). A distribution-free k-sample test against ordered alternatives.
Biometrika, 41(1/2), 133-145. doi: 10.1093/biomet/41.1-2.133

Kendall, M. (1948). Rank correlation methods. London: Griffin.

Kendall, M. G. (1938). A new measure of rank correlation. Biometrika, 30(1/2), 81–93.

Kendall, M. G., & Gibbons, J. D. (1990). Rank correlation methods. London.: Edward Arnold.

Kim, J. H. (1996). On increasing subsequences of random permutations. Journal of Combinato-
rial Theory, Series A, 76(1), 148 - 155.

Kleinecke, D., Ury, H., & Wagner, L. (1962). Spearman’s footrule: An alternative rank statistic
(Tech. Rep. No. Report CDRP-182-114). University of California, Berkeley: Civil Defense
Research Project, Institute of Engineering Research.

Kolassa, J. E., & McCullagh, P. (1990, 06). Edgeworth series for lattice distributions. The Annals
of Statistics, 18(2), 981–985.

Kou, S. G., & Ying, Z. (1996). Asymptotics for a 2 × 2 table with fixed margins. Statistica
Sinica, 6(4), 809–829.

Logan, B., & Shepp, L. (1977). A variational problem for random young tableaux. Advances in
Mathematics, 26(2), 206 - 222.

Maciak, W. (2009). Exact null distribution for n25 and probability approximations for spear-
man’s score in an absence of ties. Journal of Nonparametric Statistics, 21(1), 113-133.

Mann, H. B., & Whitney, D. R. (1947, 03). On a test of whether one of two random variables
is stochastically larger than the other. The Annals of Mathematical Statistics, 18(1), 50–60. doi:
10.1214/aoms/1177730491

Marden, J. (1996). Analyzing and modeling rank data. Taylor & Francis.

Marengo, J. E., Farnsworth, D. L., & Stefanic, L. (2017). A geometric derivation of the irwin-
hall distribution. International Journal of Mathematics and Mathematical Sciences.

Mehta, C. R., & Patel, N. R. (1983). A network algorithm for performing fisher’s exact test in
r x c contingency tables. Journal of the American Statistical Association, 78(382), 427–434.

Metropolis, N., & Ulam, S. (1949). The monte carlo method. Journal of the American Statistical
Association, 44(247), 335–341.

Moran, P. A. P. (1950). Recent developments in ranking theory. Journal of the Royal Statistical
Society. Series B (Methodological), 12(2), 153–162.

Odlyzko, A. M., & Rains, E. M. (2000). On longest increasing subsequences in random permu-
tations. In Analysis, geometry, number theory: the mathematics of Leon Ehrenpreis (Philadelphia,
PA, 1998) (Vol. 251, pp. 439–451). American Mathematical Society.

Pearson, K. (1907). On further methods of determining correlation (No. v. 16). Cambridge Univer-
sity Press.



DRAFT

232 REFERENCES

Romik, D. (2015). The Surprising Mathematics of Longest Increasing Subsequences. Cambridge
University Press.

Salama, I. A., & Quade, D. (1990). A note on Spearman’s footrule. Communications in Statistics
- Simulation and Computation, 19(2), 591-601.

Sen, P. K., & Salama, I. A. (1983). The Spearman footrule and a Markov chain property.
Statistics & Probability Letters, 1(6), 285–289.

Serfling, R. J. (1980). Approximation theorems of mathematical statistics. New York.: Wiley.

Silverberg, A. R. (1980). Statistical models for q-permutations. (Unpublished doctoral disserta-
tion). Department of Statistics, Princeton University.

Silverstone, H. (1950). A note on the cumulants of Kendall’s S-distribution. Biometrika, 37(3-4),
231-235.

Spearman, C. (1904). The proof and measurement of association between two things. The
American Journal of Psychology, 15(1), 72–101.

Stockmal, F. (1962). Algorithm 95: Generation of partitions in part-count form. Commun.
ACM, 5(6), 344.
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