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Preface

Although I had done some work in ranking earlier, the conference Prob-
ability Models and Statistical Analyses for Ranking Data (Fligner and Ver-
ducci, 1993) held in 1990 at the University of Massachusetts, Amherst,
opened my eyes to a wide array of modeling and analytic techniques.
Subsequently, I prepared these notes around 1993 (in troff) for a course
on ranking data taught at the University of Illinois, Urbana-Champaign.
They provide an overview of ranking models presented at the confer-
ence, and in the literature, at that time. This current version (2017) is
cleaned up a bit, and written in LATEX, but the content is still the same.

The book Analyzing and Modeling Rank Data (Marden, 1996) greatly
expands on these notes, adding various data analytic and graphical
techniques, and providing details and examples for the models. Twenty
years have passed, and fortunately Alvo and Yu (2014) have written Sta-
tistical Methods for Ranking Data, which brings the field up to date. It is
especially strong in its treatment of Thurstonian (probit) models, using
Markov chain Monte Carlo techniques for model fitting.

The work mentioned above is most appropriate for relatively small
data sets, with a relatively small number of objects to rank. (How small
depends on the model and/or technique.) There is currently important
work being done on Big Data with a large number of objects (such as all
the web sites, or movies, in the world) and millions of judges, entailing
all manner of partial and incomplete rankings. Maybe someone will
write a nice research monograph in this area soon.
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Chapter 1

Models for Rank Data

1.1 Introduction

This chapter reviews a number of approaches to the statistical modeling
of ranking data, dealing exclusively with complete rankings. Chapter
2 reviews some methods for categorizing various models. Chapter 3
reviews likelihood and other methods for inference in ranking models.
Finally, Chapter 4 considers some extensions of the models to cases
where there are ties or other types of incomplete rankings.

1.2 Rankings vs. orderings

The canonical experiment has m objects to be ranked by n judges. Typ-
ically, each judge gives either a ranking of the objects, assigning “1” to
the favorite object, “2” to the second favorite, . . . , and “m” to the least
favorite; or an ordering of the objects, listing the objects in order from
most favorite to least favorite. These two outcomes are equivalent, but
some models are defined on rankings and some on orderings, so we
have to be able to deal with either.

We will represent one judge’s ranking by a pair of vectors of length
m, x and y. The x contains the labels of the objects. The labels may
be numbers, letters, names, or anything else. Denote the set of labels
by O = {l1, . . . , lm}. The y contains the rankings of the objects. The
rankings must be integers from 1 to m, and each integer must appear in

1



2 CHAPTER 1. MODELS FOR RANK DATA

xi’s equal yi’s equal
The rankings The orderings
x y1 y2 y3 y x1 x2 x3

Red 3 5 4 1 Green Blue Green
Yellow 6 4 2 2 Blue Green Yellow

Blue 2 1 3 3 Red Orange Blue
Orange 4 3 5 4 Orange Yellow Red
Green 1 2 1 5 Purple Red Orange
Purple 5 6 6 6 Yellow Purple Purple

Table 1.1: Comparison of orderings and rankings.

the vector exactly once. That is,

x ∈ Lm ≡ {All permutations of O}

and

y ∈ Pm ≡ {All permutations of {1, 2, . . . ,m}}.

Thus there are m! elements in both Lm and Pm. The interpretation of a
particular pair (x,y) is

Object xi is ranked number yi among the m objects.

Thus if x = (Red, Blue, Yellow) and y = (2, 1, 3), (x,y) corresponds
to having Blue ranked first, Red second and Yellow third. Note that
x = (Blue, Yellow, Red) and y = (1, 3, 2) correspond to the exact same
ranking, so that it is very important to know both x and y.

Now consider the set of n rankings, one from each judge, so that the
data are

(x1,y1), (x2,y2), . . . , (xn,yn).

In order to present the data and to fit models to the data, it is convenient
to have either all xi’s equal, or all yi’s equal. Table 1.1 illustrates the
two methods.

In the first set, the objects are in a fixed order xi = (Red, Yellow, Blue,
Orange, Green, Purple), and the yi’s are the rankings of the colors in
that order. In the second set, the rankings yi are all in the regular order
(1, 2, . . . , 6), and the xi’s are the orderings of the colors from favorite to
least favorite.



1.3. STATISTICAL MODELS 3

1.3 Statistical models

Now let (X ,Y ) be a pair of random vectors. The joint sample space
of the pair is Lm × Pm. A probability distribution on Lm × Pm can be
given by its density f, where f is a function of (x,y) such that

f(x,y) > 0 for all (x,y) ∈ Lm ×Pm and
∑

(x,y)∈Lm×Pm

f(x,y) = 1.

(Here we are dealing with just discrete distributions, in fact, distribu-
tions on finite sample spaces.) Then P[(X ,Y ) = (x,y)] = f(x,y). A
statistical model is a family of such probability distributions. Typically,
the family can be parametrized by a small number of parameters, say
θ = (θ1, . . . , θp). Letting Θ be the range of θ, the parameter space, the
model is written

{fθ(x,y) |θ ∈ Θ}. (1.3.1)

In almost all cases, either x or y is fixed as in the previous section. Thus
typically the densities will be either

fθ(x) for x ∈ Lm or fθ(y) for y ∈ Pm.

For explicative reasons, densities will often be given in the form

fθ(y) =
1
c(θ)

gθ(y),

where gθ is given explicitly, but c(θ) is not. In such cases, it is to be
understood that c(θ) is whatever it must be so that the density sums to
1.

The following sections contain brief introductions to the main types
of probability models used for rankings. Critchlow, Fligner, and Ver-
ducci (1991) contains a similar development. For each one, whether the
x or the y is fixed must be specified. There are two extreme models: the
uniform and the saturated. When x is fixed, the uniform model has no
parameters, and each y is equally likely:

f(y) =
1
m!

for every y ∈ Pm ; write Y ∼ Uniform(Pm). (1.3.2)

Similarly, when y is fixed, we can define X ∼ Uniform(Lm). When
x is fixed, the saturated model has m! parameters (m! − 1 free ones)
{py |y ∈ Pm}, where py = P[Y = y]. The parameter space is the simplex
in Rm!, that is, all sets of nonnegative values which sum to 1. The
saturated model for y fixed is similar.

These extreme models are good to use as benchmarks. The uniform
is the null model; one often first tests whether to reject it before trying to
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look for structure in the data. The uniform is a submodel of almost all
models. On the other hand, every model is contained in the saturated
model. Thus one can test for goodness-of-fit of a particular model by
comparing it to the saturated model. The hope is to find a model which
is as simple as possible but still fits well.

1.4 Thurstonian (≡ order statistic) models

Here, y is fixed to be (1, 2, . . . ,m), so that x represents the ordering
of the objects. Each object has a continuous but unobserved random
variable associated with it. Call these variables Zl1 ,Zl2 , . . . ,Zlm , where
Zli is that associated with the object li. A joint model is assumed for
the vector Z of the Zl’s. The observed ordering of the objects is then
given by the order of the Zl’s, that is,

x = (li1 , li2 , . . . , lim) if and only if Zli1 < Zli2 < · · · < Zlim . (1.4.1)

For example, if O = {Red, Yellow, Green}, then x = (Yellow, Green, Red)
if and only if ZYellow < ZGreen < ZRed. Thus the probability of any
ranking of the objects is the probability of the corresponding order of
the Zl’s.

The parameters for the model are those needed to describe the dis-
tribution of the vector Z. Thurstone (1927), who invented the model,
proposed using the normal distribution, hence the parameters included
the m means, m variances, and

(
m
2
)
(= m!

k!(m−k)! ) correlations. He also
suggested simplifications such as equating the correlations, equating
the variances, and/or setting the correlations to 0 so that the Zli ’s are
independent. See Böckenholt (1993).

Daniels (1950) continued by looking at cases in which the Z’s are
independent and from a location-family model with possibly different
location parameters. That is, for some continuous density g, the density
of Z is

m∏
i=1

g(zli − µli). (1.4.2)

Yellott (1977) considered the Gumbel distribution g(z) = e−e
−z

(see the
Luce model in Section 1.6.1), and Henery (1983) and Stern (1987) used
gamma distributions.
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1.5 Paired comparison models

1.5.1 Babington Smith

An alternative to asking someone to rank the m objects is to have them
choose which of each pair of objects is preferred. Thus instead of giving
the ordering (Yellow, Red, Green), one would say “Yellow is preferred to
Red,” “Red is preferred to Green” and “Yellow is preferred to Green.”
For m objects there are

(
m
2
)

such comparisons to make. It should be
clear that given a ranking, one can easily determine what the pairwise
preferences are. However, it is not always the case that a set of pairwise
preferences corresponds to a ranking. For example, one might prefer
Yellow to Red, Red to Green, and Green to Yellow. There are a number
of papers which look at paired comparison data in which such nontran-
sitivities are allowed. Kendall and Babington Smith (1940) is perhaps the
seminal one. In contrast, we are taking the view that people construct a
legitimate ranking by starting with paired comparisons, but report their
preferences only after having a consistent set of comparisons, i.e., a set
which yields an unambiguous ranking. The resulting ranking model is
referred to as the Babington Smith model, because allegedly it appears
in Babington Smith (1950).

First fix the vector y = (1, 2, . . . ,m), so that xi is the label of the
object ranked ith. The general model is based on

(
m
2
)

parameters p =
{plilj | 1 6 i < j 6 m}, where plilj is interpreted as the probability
object li would be preferred to object lj if only that comparison were to
be made. Ties are not allowed, so that pljli = 1 − plilj . A ranking is
obtained by making independently all the pairwise comparisons using
those probabilities. If the comparisons yield a consistent ranking, that
ranking is the x. If not, start over with the pairwise comparisons. One
repeats until the comparisons are consistent.

The probability that the paired comparisons are consistent is

c(p) =
∑
x∈Lm

∏
i<j

pxixj . (1.5.1)

For m = 3, and O = {A,B,C}, Lm = {ABC, ACB, BAC, BCA, CAB, CBA},
so that

c(p) = pABpACpBC + pACpABpCB + pBApBCpAC

+ pBCpBApCA + pCApCBpAB + pCBpCApBA.

Now the probability of an ordering x given that the pairwise compar-
isons are consistent is the probability that the comparisons yield x di-
vided by the probability they are consistent. Thus the Babington Smith
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model is
fp(x) =

1
c(p)

∏
i<j

pxixj . (1.5.2)

Note that it is not necessary that the plilj ’s be consistent. That is, it is
odd but legitimate to have pl1l2 = 0.9 and pl2l3 = 0.95 but pl1l3 = 0.1.
See (2.5.1) and (2.5.2) for transitivity constraints on the plilj ’s that avoid
such behavior.

This model can be unwieldy if m is at all large because there are
many parameters, and the constant c(p) is not very compact: It consists
of a sum of m! products of

(
m
2
)

terms. The next section considers some
simplifications.

Warning. Recall that plilj is the probability of object li being preferred
to object lj if that comparison is the whole experiment. However, the
probability that li is preferred to lj after the entire ranking experiment
has been performed is not plilj .

1.5.2 Bradley-Terry-Mallows

Here, the parameters plilj are given special forms. Bradley and Terry
(1952) proposed positive constants

ν = (vl1 , . . . , vlm),

where vli is associated with object li, setting

plilj =
vli

vli + vlj
.

The idea is that the larger vli , the more preferred object li is. Bradley
and Terry were thinking of just paired comparisons, but Mallows (1957)
suggested substituting the Bradley-Terry form of the plilj ’s into the
Babington Smith model for ranks. Note that for an ordering x ∈ Lm,∏

i<j

pxixj =

∏m
i=1 v

m−i
xi∏

i<j(vli + vlj)
,

since “vxi” appears in the numerator the same number of times as object
xi is preferred to the other objects. Thus the model is

fν(x) =
1
c(ν)

m∏
i=1

vm−i
xi

. (1.5.3)

This model now has only m parameters; in fact, since the probabilities
are invariant to multiplying the vi’s by a positive constant, there are
only m− 1 free parameters.
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Mallows also simplified the model by assuming other special forms
for the plilj ’s. His two-parameter model assumes that the objects are
indexed in a meaningful way, e.g., l1 is the most popular, l2 is second
most popular, . . . , lm is least popular. The model sets

plilj =
1 + tanh((j− i) log(θ) + log(φ))

2
for i < j.

We will just look at the two one-parameter subfamilies obtained by set-
ting either θ or φ to 1.

1.5.3 Mallows’ φ model

This model is perhaps the most famous of all. One supposes that the
paired-comparison probability of ranking object li before object lj de-
pends only on whether i < j or j > i. Thus the plilj ’s for i < j are all
equal. It is usual to parametrize this probability as

plilj =
eγI[i>j]

1 + eγ
, (1.5.4)

where I[S] for an event S is the indicator of that event, that is, it equals
1 if the event occurs, 0 if it does not. If γ < 0, then objects with lower
indices will tend to be ranked higher. Placing these (1.5.4) in the Babing-
ton Smith model (1.5.2) yields

fγ(x) =
1
c(γ)

eγdK(x), (1.5.5)

where
dK(x) =

∑
i<j

I[index(xi) > index(xj)],

and “index” gives the index of the object, i.e., xi = lindex(xi). This dK(x)
is the number of times a later object is preferred to an earlier object, and
in fact is related to Kendall’s τ distance in (1.8.3).

For example, if x = (l3, l2, l5, l1, l4), then d(x) = 2 + 1 + 2 + 0 = 5.
That is, for i = 1, since x1 = l3, index(x1) = 3. Then we check the indices
of the lj’s after the first, and we see 2 of them less than 3 (obviously).
Next we look at i = 2, seeing x2’s index is 2. There is just 1 index lower
than 2 among those to the right of x2. Then there are 2 to the right of x3
lower than the index 5, and 0 to the right of x1 lower than the index 1.

It turns out that the constant c(γ) is reasonably tractable, an unusual
situation so far. See Section 3.7.
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1.5.4 Mallows’ θ model

This model is a Bradley-Terry model with the special form for the vi’s
being

vli(γ) = e
γi,

hence

plilj =
eγi

eγi + eγj
. (1.5.6)

Inserting these (1.5.6) into the Babington Smith model (1.5.2) gives

gγ(x) =
1
c(γ)

eγs(x), (1.5.7)

where

s(x) =

m∑
i=1

(m− i) · index(xi).

Here, s is related to Spearman’s ρ distance in (1.8.3). The difference
between Mallows’ φ and θ models is that in the latter plilj depends on
the difference i− j, while in the former the plilj depends only on the
sign of i− j.

1.6 Multistage models

1.6.1 Luce’s choice axiom

Luce (1959) presents an axiom which he deems reasonable when declar-
ing preferences among the objects. Let T be any subset of the objects’
labels O, and a be any of those in T. Then Luce defines

PT(a) = Prob[Object a is the most preferred among those in T]

and for any subset S ⊂ T,

PT(S) =
∑
a∈S

PT(a),

which is the probability the most preferred among T is one of those in
S. The following axiom concerns the subset T ⊂ O.

Axiom 1.6.1. Luce’s choice axiom

(i) If P{a,b}(a) 6= 0 for all a,b ∈ T, then for r ∈ S ⊂ T,

PT(r) = PS(r)PT(S);
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(ii) If P{a,b}(a) = 0 for some a,b ∈ T, then if r ∈ T, r 6= a,

PT(r) = PT−{a}(r).

The condition P{a,b}(a) 6= 0 means it is possible to prefer a to b.
Conversely, P{a,b}(a) = 0 means b is always preferred to a. Thus con-
dition (i) says that as long as any pairwise preference is possible among
the objects in T, the probability that r is the favorite is the same as the
probability that the favorite is in the set S times the probability that r is
the favorite in S. Part (ii) says that if b is always preferred to a, then the
probability r is the favorite does not change when a is thrown out.

For example, suppose O = {Coke, Pepsi, 7-up, Sprite}. The axiom
applied to T = O implies that if any pairwise preference is possible,
then in particular

P[Coke is the favorite among all four] = P[Coke is preferred to Pepsi]
× P[A cola is chosen as the favorite among all four].

Thus the choosing of the favorite can be decomposed into a two-stage
process. If 7-up is always preferred to Sprite, then part (ii) of the axiom
implies that

P[Coke is the favorite among all four]
= P[Coke is the favorite among {Coke, Pepsi, 7-up}].

Now suppose we have a ranking model for O such that for all a,b ∈
O, P{a,b}(a) 6= 0. It is called L-decomposible if it satisfies (part (i) of)
the choice axiom for all subsets T ⊂ O. One consequence is that, with
y = (1, 2, . . . ,m),

P[X = x] = PO(x1)× P{x2,...,xm}(x2)× · · · × P{xm−1,xm}(xm−1). (1.6.1)

That is, the probability of ordering x is the probability x1 is the favorite
of all, times the probability x2 is the favorite of all but x1, times the
probability that x3 is the favorite of all but x1 and x2, etc.

Another consequence is the property independence from irrelevant
alternatives: The relative ranking of the objects in some subset T ⊂ O

is independent of the relative ranking of the objects in O − T. In the
example above, this means that the probability that Coke is preferred to
Pepsi does not depend on whether 7-up is preferred to Sprite.

Finally, the axiom implies a form of the model which looks reminis-
cent of the Bradley-Terry model. There exist positive constants νi such
that if li ∈ S ⊂ O,

PS(li) =
vli∑
lj∈S vlj

. (1.6.2)
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Without loss of generality we assume that the vli ’s sum to one. Then
P[X1 = li] = vli , that is, vli is the probability that object li is ranked
#1. Putting (1.6.1) and (1.6.2) together, we have the (m− 1)-parameter
model

fν(x) =
vx1

1
×

vx2

vx2 + · · ·+ vxm
× · · ·

vxm−1

vxm−1 + vxm
. (1.6.3)

Plackett (1975) presents this model as a model for an m-horse race.
Thus vSea Biscuit is the probability that Sea Biscuit wins when allm horses
race, vMr. Ed/(1− vSea Biscuit) is the probability that Mr. Ed wins when all
but Sea Biscuit race, etc. Silverberg (1980) calls this a Vase model. The
idea is that one has a vase with an infinite number of balls, a proportion
of vRed are Red, vBlue are Blue, etc. The ordering x is generated by first
randomly drawing a ball, and assigning its color to x1. Another ball is
drawn. If it is a different color, that color is assigned to x2. If it is the
same as x1, it is thrown away and another ball is drawn, continuing this
process until a new color is drawn for x2. More draws are made until a
color distinct from x1 and x2 is found, which is assigned to x3, etc.

1.6.2 Free and φ component models

Fligner and Verducci (1986; 1988) define multistage ordering probabili-
ties that do not satisfy Luce’s choice axiom but do result in a plausible
model. That is, (1.6.1) holds but (1.6.2) does not. The ranking vector y
is fixed at (1, 2, . . . ,m), and the ordering x proceeds by operating itera-
tively on the vector (l1, l2, . . . , lm) as follows. First, choose which object
will be ranked #1, assign it to x1, and move it to the first slot in the vec-
tor, keeping the other objects in the same relative order. Let U1 be the
number of places the object moved. The second ranked object is chosen
from the remaining. Assign it to x2, move it to the second slot, and
keep the other m− 2 objects in the same order. Now U2 is the number
of places x2 moved. Continue until there are two objects left. Decide
which is preferred, and place it in the (m− 1)st slot. Then Um−1 is the
number of places it moved, hence is either 0 or 1.

It is easier to see an example. Suppose O = {A,B,C,D,E}, and the
resulting ordering is x = (B,D,E,C,A). Table 1.2 exhibits the stages in
transforming ABCDE to BDECA. First, B is moved up one slot; then D
is moved up 2; E is moved up 2; and finally C is moved up 1.

Of course, these Ui’s can be defined for any model. However, the
crux of the Fligner and Verducci model is that the distribution for X is
that induced from one on U ≡ (U1,U2, . . . ,Um−1) in which the Ui’s are
independent. The range of Ui is {0, 1, . . . ,m− i}, so that the space of U
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Stage 1 Stage 2 Stage 3 Stage 4
A B B B B
B A D D D
C C A E E
D D C A C
E E E C A

U1 = 1 U2 = 2 U3 = 2 U4 = 1

Table 1.2: Steps in a component model

is
Um ≡ {0, 1, . . . ,m− 1}× {0, 1, . . . ,m− 2}× · · · × {0, 1}.

It can be shown that there is a one-to-one correspondence between Um
and Lm, so that knowing the Ui’s is enough to know x. The models for
U are of the form

h(u) = h1(u1)h2(u2) · · ·hm−1(um−1), u ∈ Um, (1.6.4)

where hi is a density on {0, . . . ,m− i}. The free model allows the in-
dividual hi’s to be unrestricted. Other models restrict the hi’s to some
parametric form. A special case is the φ component model in which Ui
is assumed to have a truncated geometric distribution with parameter
θi, i.e.,

hiθi(ui) =
1

ci(θi)
eθiui , ui = 0, . . . ,m− i,

where

ci(θi) =
1 − eθi(m−i+1)

1 − eθi
. (1.6.5)

Then the density of U is

hθ(u) =
1
c(θ)

e
∑m−1
i=1 θiui . (1.6.6)

This model (1.6.6) is called the φ component model because when the
θi’s are all equal to γ, the density becomes that of Mallows’ φ model
(1.5.5) since dK(x) =

∑
ui.

The presentation here has assumed that the ranking proceeded by
first deciding which object would be ranked #1, then which #2, etc. An
alternative approach would be to fix the x = (l1, l2, . . . , lm), and first
decide what the rank of l1 should be, then that of l2, etc. Thus one
starts with the ranking vector (1, 2, . . . ,m), and moves the ranks, one
at each stage. The Ui can again be defined as how many places the
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rank of object li was moved, and the models can be applied to these
Ui’s. These models are mathematically the same as above, but concern
rankings rather than orderings.

1.6.3 Orthogonal contrast models

In the models in the previous section each stage involved choosing the
one favorite object among those left. More general stages could choose
sets of objects, so that, for example, if O = {A,B,C,D,E}, at the first
stage one might divide the objects into two groups {A,C,D} and {B,E},
the interpretation being that A, C and D are all preferred to B and E.
The second stage may choose A as the favorite among {A,C,D}, the third
stage choose C above D, and the fourth choose E above B. The resulting
ordering is then ACDEB. A model analogous to the Fligner and Verducci
ones would then declare the choices at each stage independent.

Chung and Marden (1991) define the stages in terms of ranks instead
of objects. Some definitions are needed.

Definition 1.6.2. Given a set O of objects, a contrast C is an ordered set
(I, J) of two nonempty disjoint subsets I and J ⊂ O.

The idea is that contrast C represents a comparison between the two
sets of objects I and J. For example, suppose

O = {Coke, Pepsi, 7-up, Sprite,
Diet Coke, Diet Pepsi, Diet 7-up, Diet Sprite}.

Then some possible contrasts are

C1 =({Coke, Pepsi, 7-up, Sprite},
{Diet Coke, Diet Pepsi, Diet 7-up, Diet Sprite});

C2 =({Coke, Pepsi}, {7-up, Sprite});
C3 =({Coke}, {Pepsi});
C4 =({Coke, Pepsi, Diet Coke, Diet Pepsi},

{7-up, Sprite, Diet 7-up, Diet Sprite}).

ThusC1 compares the non-diet to the diet drinks, C2 compares the non-
diet colas to the non-diet uncolas, C3 compares Coke and Pepsi, and C4
compares the colas to the uncolas. Marden (1992) extends the definition
of contrast to include comparisons of more than two groups of objects.

The value a particular judge has for a particular contrast is defined
to be the set of ranks of the objects in I relative to the objects in I ∪ J.
The relative ranks of the objects within group I are irrelevant. Con-
sider contrast C2 above. A judge who likes both colas better than either
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uncola would have a value of {1, 2} for the contrast. This value is not
meant to give any information about which cola is preferred, i.e., {1, 2}
and {2, 1} are the same value. A judge who prefers both uncolas to the
colas has the value {3, 4}. The value {1, 3} means Coke and Pepsi are
ranked 1 and 3, or 3 and 1, among the four non-diet drinks.

The value a judge has for a contrast can be obtained from the judge’s
ranking y of the objects in the order (l1, l2, . . . , lm). The formal defini-
tion follows.

Definition 1.6.3. For y ∈ Pm and C = (I, J) a contrast of objects in O,
the value of the contrast at the ranking is

C(y) = {yi | i ∈ I},

where yi is the rank of yi relative to the ranks {yi | i ∈ I∪ J}.

Continuing the soft drink example, suppose y = (3, 8, 5, 7, 6, 2, 4, 1).
The values of the four contrast are

Values for y = 38576241
Contrast C1 C2 C3 C4

Value {3, 5, 7, 8} {1, 4} {1} {2, 3, 6, 8}

The value for C2 is found by first finding the ranks for the non-diet
drinks: 3857. Then these are reranked relative to each other: 1423. These
numbers are the yi’s. Then since I = {l1, l2}, the value is C2(y) = {1, 4}.
The value for C3 is {1} since of the two colas, Coke is ranked first and
Pepsi second.

Knowing the value of a contrast gives only partial information about
the entire ranking y. However, if you know the values for enough of the
contrasts, you should be able to reconstruct the entire ranking. In partic-
ular, it is enough to know just the pairwise contrasts ({li}, {lj}) for i < j.
The minimal number needed is m− 1. Special sets of contrasts, orthog-
onal contrasts, are especially efficient. Another definition is needed.

Definition 1.6.4. Two contrasts C = (I, J) and D = (K,L) are orthogo-
nal if either

(i) (I∪ J)∩ (K∪L) = ∅;
(ii) (I∪ J) ⊂ K or (I∪ J) ⊂ L; or
(iii) (K∪L) ⊂ I or (K∪L) ⊂ J.

The idea here is that two contrasts are orthogonal if the compar-
isons they represent are not confounded. Condition (i) means the two
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contrasts compare totally different sets of objects; (ii) and (iii) state that
all the objects in one of the contrasts are contained in the same group
of the other contrast. In the example, C1 and C2 are orthogonal since
the first compares non-diets to diets, while the second is a comparison
within the non-diets. C1 and C4 are not orthogonal since both involve
comparison of {Coke, Pepsi} to {Diet 7-up, Sprite}. Other contrast pairs
which are orthogonal are C1 and C3, C2 and C3, and C3 and C4; C2
and C4 are not orthogonal.

An orthogonal contrast model depends on a set of q orthogonal con-
trasts, (C1, C2 , . . ., Cq). The following lemma is a justification for the
designation ”orthogonal.”

Lemma 1.6.5. If (C1,C2, · · · ,Cq) is a set of orthogonal contrasts and Y
∼ Uniform(Pm) (see (1.3.2)), then C1(Y ),C2(Y ), · · · ,Cq(Y ) are indepen-
dent, each Ci(Y ) being uniformly distributed over its space.

The next three subsections give special cases of orthogonal contrast
models. These models are nested: φ ⊂ Free ⊂ Contingency table.
The Fligner and Verducci (1988) component model on ranks, defined
in the last paragraph of Section 1.6.2, uses a special case of orthog-
onal contrasts: C1 = ({l1}, {l2, . . . , lm}), C2 = ({l2}, {l3, . . . , lm}), . . . ,
Cm−1 = ({lm−1}, {lm}). The free and φ component models are then
special cases of the free and φ orthogonal contrast models.

The Free model

Start with densities h1, . . . ,hq, where hi is a density for contrast Ci.
The free model states that the contrasts are independent but otherwise
unrestricted. Thus

f(y) =

q∏
i=1

hi(Ci(y)). (1.6.7)

Compare this to the model (1.6.4). Since contrast Ci = (Ii, Ji) has(#Ii+#Ji
#Ii

)
possible values, the number of parameters in the model (1.6.7),∑

(
(#Ii+#Ji

#Ii

)
− 1), can be quite large. The next model reduces the num-

ber of parameters significantly.

The φ model

Analogous to (1.6.6), the φ model declares a particular parametric form
for each of the hi’s in (1.6.7). First we need a single number for each
value of a contrast to measure the degree of preference of the first group
over the second. The simplest is to take the sum of the elements of the
value. Thus if a contrast has C(y) = {3, 5, 7, 8}, then the statistic is
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3 + 5 + 7 + 8 = 23. The lower the number, the more the first group is
preferred. We will change it slightly so that the lowest number is 0.
Thus if C = (I, J), the associated statistic will be

d(C(y)) ≡
#I∑
i=1

yi −

(
#I+ 1

2

)
. (1.6.8)

Now the φ model has a q-parameter vector θ where

fθ(y) =
1
c(θ)

e
∑q
i=1 θid(Ci(y)). (1.6.9)

Those familiar with nonparametrics will recognize d as equivalent to
the Mann-Whitney or Wilcoxon statistic for testing the equality of two
populations.

Contingency table models

The φ model, as the free model, assumes that the contrasts are inde-
pendent. Such a requirement is not always tenable. For example, the
two contrasts ({Coke}, {7-up}) and ({Diet Coke}, {Diet 7-up}) are orthog-
onal, but it would not be surprising if they were not independent. A
contingency table model generalizes the free model by considering the
contrasts as the factors in an q-way contingency table. Any well-known
contingency table model can be contemplated. The free model is just the
independence model. One could also look at the model with all second-
order interactions, or all third-order interactions, or one in which the
first two contrasts are conditionally independent given the others, or
the saturated model (see below (1.3.2)).

1.7 Unfolding models – Non-stochastic

Coombs (1964) has a general theory for preference data which seeks to
plot judges and objects in the same space in such a way that the more a
judge likes an object, the closer the judge is to the object. One can also
look at the inter-judge and inter-object distances. The corresponding
one-dimensional unfolding model places the objects and judges on the
real line. A particular judge then ranks the objects in the order of their
distance from the judge. For example, suppose there are five wines A,
B, C, D, and E, all the same except for their oak content, A having the
least, E the most. Also, let there be four judges, J1, . . . , J4. A possible
plotting of the judges and wines is

J1__A____B__J2____________J3__C__D___J4____E_.
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Judge 1 does not like oak much. His ordering is ABCDE. Judge 2
and Judge 3 both prefer oak content to be somewhere between those
of wines B and C, but Judge 2 is closer to B. Their orderings are, respec-
tively, BACDE and CDEBA. Judge 4 likes oak. Her ordering is DECBA.
The word ”unfolding” arises since one can obtain the ordering of a par-
ticular judge by folding the scale at that judge’s point. The objects are
then in the correct order.

The non-stochastic version of the unfolding model posits that there
is a scale on which the objects and all the judges can be placed which
returns every judge’s ordering exactly. In typical data sets, such a scale
is impossible to find. For example, if Judge 5’s order were DCBEA,
there would be no way to place the J5 on the scale. Thus some way to
incorporate slight deviations from the scale must be incorporated. Dis-
tance models seem appropriate. Section 1.9 will consider the stochastic
version.

One can also have multidimensional unfolding models, although
they are harder to fold. Basically, the objects and judges are placed in
p-dimensional space. A judge’s ordering is again in order of Euclidean
distance from the objects. For example, with p = 3 one might have the
wines differ in oak content, sweetness and viscosity.

1.8 Sufficient statistic models

The models up until now have a hard-modeling flavor. Each model
assumes that ranking is performed by building upon smaller units,
whether paired comparisons or stages or distances. Once the proba-
bility density is determined, it is possible to determine whether there
are any sufficient statistics, that is, whether the information in the data
about the parameters can be obtained from some functions of the data,
which is especially useful when there is a large number of judges.

Formally, suppose W is a random vector or matrix with associated
model {fθ(w) |θ ∈ Θ}. We will just consider the discrete case. Suppose
S(w) is a function on the space of W .

Definition 1.8.1. Sufficiency. S is sufficient for the model if the condi-
tional distribution of W given S does not depend on θ. That is, there is
a function h(w | s) such that

P[W = w |S(W ) = s] = h(w | s) =
gθ(w)∑

{v|S(v)=s} gθ(v)
if S(w) = s.

The Fisher factorization theorem states that S is sufficient if and only
if there exist functions a(w) and bθ(s) such that

gθ(w) = a(w)bθ(S(w)). (1.8.1)
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Thus the parameter θ ”touches” the data w only through the function
S(w).

As an example, suppose there are n observed ranking vectors X1,
X2, . . . ,Xn which are independent with the same Mallows’ φ model
density (1.5.5). The W consists of all n vectors. The joint density of the
Xi’s is the product of the individual fγ’s:

gγ(x1,x2, . . . ,xn) =
n∏
i=1

fγ(xi) =
1

c(γ)n
eγ
∑n
i=1 d(xi).

Thus with S(w) =
∑
d(xi), (1.8.1) holds where bγ(s) = c(γ)−neγs,

hence
∑
d(xi) is sufficient. This represents a substantial reduction in

the data, from nm numbers to just one.
Other models show other reductions. The Thurstonian models typi-

cally do not allow much of any reduction. The Babington Smith paired
comparison models have

(
m
2
)
-dimensional sufficient statistics being the

number of people who prefer object li to object lj, i < j. In any case,
making such reductions when possible can be very helpful.

A softer, more data-analytic approach to modeling does not start
with a mechanism and then try to find a density and hence sufficient
statistic; rather, one starts with some numerical summaries of the data
one thinks capture the main features of the data, and then creates a
model that has those summaries for the sufficient statistics. For exam-
ple, one might have data y1, . . . ,yn, and decide to summarize the data
by looking at just the average ranks y =

∑
yi/n. The corresponding

model would be as in (1.8.1) with S being the vector of means. One
still must choose a, b and θ. One common method for choosing them
is to try to find a distribution which is as close to being uniform as
possible given fixed values for the expected values of the vector S. If
closeness to uniform is measured using the entropy function, then the
resulting distribution is the exponential family distribution with pa-
rameter θ, there being one parameter for each element of S. That is, if
S = (S1,S2, . . . ,Sp), then

fθ(y1, . . . ,yn) =
1
c(θ)

e
∑p
i=1 θiSi(y1,...,yn). (1.8.2)

This is a very flexible and rich set of models. The next two subsections
exhibit some particular ones. We note that the exponential family model
with S = y, the vector of mean ranks, is equivalent to the Bradley-Terry-
Mallows model (1.5.3).
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1.8.1 Counts of rankings

Paul Holland (see Diaconis (1988), p.172) and Verducci (1982) suggest
using S to be counts of the number of people giving object li the rank
of j, 1 6 i, j 6 m. There are potentially (m− 1)2 statistics, hence param-
eters, but simpler distributions can be found by making some restric-
tions. For example, let Sli be the number of people who rank object li
#1. Another model might have Skli be the number of people who rank
object li kth, but only k = 1 and 2 are used. More complicated models
can be built with statistics of the form “the number of people who give
objects li and li′ the ranks j and j′, respectively. See Silverberg (1980)
and Plackett (1975).

Diaconis (1988; 1989) presents a spectral analysis approach to anal-
ysis of rank data. He shows how to decompose the overall distribution
into first-order, second-order, etc., effects. Although he does not create
models out of this analysis, Verducci (1982) uses the spectral effects as
sufficient statistics for some exponential family models.

1.8.2 Distance-based models

Often, one assumes there is a “modal” ranking µ ∈ Pm of the objects,
and judges are expected to have rankings more or less close to µ. Ap-
propriate models would give higher probability to rankings closer to
the modal ranking; the question is how to measure the distance. There
are a number of well-known metrics and distances used for rankings in
Pm. Diaconis (1988) and Critchlow (1985) have extensive discussions.
Suppose y, z ∈ Pm. Some measures are

Kendall’s τ distance :
∑
i<j

I[(yi − yj)(zi − zj) < 0];

Spearman’s ρ distance :

m∑
i=1

(yi − zi)
2;

Spearman’s footrule :

m∑
i=1

|yi − zi|;

Hamming distance : #{i |yi 6= zi};
Cayley distance : Minimum number of transpositions to

take y to z;

Ulam distance : m− length of longest set of monotone
pairs(yi, zi).

(1.8.3)
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Exponential family distance-based models are those in (1.8.2) with
the one statistic S =

∑n
i=1 d(y,µ), where d is the particular distance

used. Mallows’ φ model is of this form with Kendall’s τ metric, and
Mallows’ θ model uses Spearman’s ρ metric. These and other such
models can be found in Fligner and Verducci (1986). In some cases, the
modal ranking µ is known, and in other cases it is of interest to estimate
it. In the latter case these models have parameters (θ,µ) ∈ R×Pm.

1.9 Unfolding models – Stochastic

Recall the unfolding models in Section 1.7, where it was assumed that
there was a linear scale so that all observed rankings could be found by
appropriate placing of objects and judges on the scale. In typical sets of
data, there is no such placement possible. One approach to extending
the non-stochastic model is to allow people to make errors with certain
probabilities. Thus for a given placement of the objects on a scale, there
is a set of orderings OU ∈ O which contains all the orderings which
are exactly obtainable from the scale. Then any particular ranking y
is either in OU, or a certain distance from some element of OU. van
Blokland-Vogelesang (1989) uses Kendall’s τ distance to create the fol-
lowing model which allows variance in the rankings. Assume that for
each µ ∈ OU, there is a proportion qµ of people in the population with
µ as their “true” ranking. The distribution of the ranking Y for those
people then follows Mallows’ φ model. Thus the probability of any
ranking y is a mixture

fθ(y) =
∑
µ∈OU

qµ
1

c(θi)
eθid(y,µ). (1.9.1)





Chapter 2

Distinctions and Commonalities

2.1 Introduction

Chapter 1 revealed a number of approaches to finding models for rank
data. In fact, it would be quite easy to become confused about what dif-
ferences and similarities exist among the models. This chapter discusses
various ways in which to classify the models, thus to bring a sense of
order to the proceedings.

2.2 Thurstone + Luce choice models

Sections 1.4 and 1.6.1 present two different choice models. Using the
notation of Section 1.6.1, we have that for S ⊂ O and r ∈ S, pS(r) is the
probability of choosing object r as the favorite among the objects in S.
For each fixed S, {pS(r) | r ∈ S} is a probability distribution on S. The
totality of such distributions is

p ≡ {{pS(r) | r ∈ S} | S ⊂ O}. (2.2.1)

With no restrictions, the p has an (1+ (m− 2)2m−1)-dimensional range.
Thus except for fairly small m, it is necessary to demand some coher-
ence from the set of probabilities. One idea is to disallow interactions
of the objects, that is, one’s response to a particular object depends only
on the object itself, not on which other objects it happens to be com-
pared to. Thus we wish to avoid situations with probabilities such as

21



22 CHAPTER 2. DISTINCTIONS AND COMMONALITIES

the following:

P{Coke, Pepsi, 7-up, Sprite}(Coke) = 90%

while P{Coke, Pepsi, 7-up}(Coke) = 10%.

Luce’s approach is to posit a reasonable axiom that would govern the
probabilities. This axiom is Luce’s choice axiom of Section 1.6.1. Note
that the axiom places a requirement on the (probabilities of) observed
results of choice experiments, but does not try to explain how one ar-
rives at the choices. By contrast, Thurstone’s approach proposes an
actual mechanism to model responses of the individual to stimuli, from
which the choice probabilities arise. Thus if Z is the random vector as-
sociated with the objects as in Section 1.4, then the choice probabilities
are found to be

PS(r) = P[Zr < Zs for all s ∈ S− {r}]. (2.2.2)

When, if ever, does a Thurstonian model satisfy Luce’s axiom? This
question is addressed in Yellott (1977). Make the conventions that

1. There is always a chance any one of the objects will be chosen, i.e.,
PS(r) > 0 for all r ∈ S 6= ∅;

2. For Thurstonian models, the Z follows a location-family model
(1.4.2).

The following is Yellott’s Theorem 5.

Theorem 2.2.1. Yellott’s Theorem. When m > 3, a Thurstonian model has
probabilities (2.2.2) that satisfy the choice axiom if and only if the Zli ’s have
the Gumbel distribution, that is, for some a > 0 and b,

P[Zli − µli 6 z] = e
−e−a(z−b) . (2.2.3)

This is quite an interesting result from the foundational point of
view. Whereas Thurstonian models in general do capture the notion of
non-interaction of responses, only for a very special distribution do they
satisfy the choice axiom. Whether there is something fundamentally
wrong with the axiom or with the general Thurstonian model is up to
the reader to decide. However, the following conjecture may, in practical
terms, ease the conflict.

Robustness of the Thurstone models. All reasonable functions g in
(1.4.2) yield approximately the same choice probabilities in (2.2.2). Thus
they all approximately satisfy the choice axiom.
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Ur Ur −Us
N(0,1) N(0,2)

Gumbel Logistic
Exponential Double Exponential

Uniform Tent

Table 2.1: Some distributions

The terms “reasonable” and “approximately” are suitably vague; the
extent to which the conjecture is true is fruit for future research. Ev-
idence is based on the calculation of paired-comparison probabilities
arising from different g’s. In general, under the Thurstonian model
(2.2.2), for objects r and s,

prs = P[Zr < Zs] = P[Ur −Us < −(µr − µs)] ≡ D(−(µr − µs)), (2.2.4)

where Ur = Zr − µr and Us = Zs − µs are independent with density g,
and D is the distribution function of Ur −Us. Some examples are given
in Table 2.1

One implication of the conjecture is that when using Thurstonian
models with location family density for Z, the exact distribution as-
sumed is not overly crucial; in fact, for most experimental situations
it would be impossible to distinguish between these models based on
choice data alone, hence impossible to reject the choice axiom. Thus
one may as well use whichever model is easiest to work with analyt-
ically and computationally. My guess is that that one would be the
Gumbel ≡ Luce model.

Recall from Section 1.6.1 that when the Luce model holds, and con-
vention 1 holds, there are positive constants vli corresponding to objects
li, i = 1, . . . ,m, such that the choice probabilities have the form in (1.6.2).
On the other hand, the Thurstone/Gumbel model has the location pa-
rameters µli . What is their relation? It can be shown that it is enough
to take a = 1 and b = 0 in (2.2.3). Then from Table 2.1, since the logistic
distribution function is D(z) = (1 + e−z)−1,

vr

vr + vs
= P[Zr < Zs] = D(−(µr − µs))

=
1

1 + eµr−µs
=

e−µr

e−µr + e−µs
. (2.2.5)

Thus we can make the identification µr = − log(vr).
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2.3 From choice to rankings

Choice probabilities as in (2.2.1) by themselves do not yield probabilities
for ranks. There are three paradigms for connecting choice and rank
probabilities presented in the first chapter:

• Thurstonian. Refer to the underlying mechanism that produces
both choice and rank probabilities;

• Conditional. Perform a number of predetermined choice exper-
iments independently, and report a ranking if the choice exper-
iments result in a complete and unambiguous ranking; other-
wise, repeat the set of choice experiments until a ranking is found
(Babington Smith);

• Multistage. Perform a number of choice experiments indepen-
dently, which ones to perform being sequentially decided given
the outcomes of the previous (L-decomposable models (1.6.1)).

Before continuing, some notation is needed to provide an overall
framework for the models to be discussed. A choice experiment is in-
dexed by subsets S ⊂ O: ES is the experiment in which one chooses the
best among the objects in S. The outcome of a particular performance of
the experiment, Outcome(ES), is a random variable. Thus from (2.2.1),

PS(r) = P[Outcome(ES) = r].

A choice-based ranking experiment is a (possibly infinite) sequence
of choice experiments, where which experiment to perform at the ith

stage is allowed to depend on the outcomes of the previous i− 1 stages,
together with the specification of when to stop and how to determine
the ranking at the end. The only restrictions placed on the ranking
experiment and choice probabilities are the following:

1. The distribution of the outcome of the ith choice experiment ESi
is independent of the previous outcomes given the choice experi-
ment selected.

2. The ranking experiment stops with probability 1.

A number of models from Chapter 1 can be given as such a ranking
experiment:

• Babington Smith. First perform the
(
m
2
)

pairwise choice exper-
iments E{li,lj} for i < j. If the outcomes yield a definitive rank-
ing, then stop. Otherwise, perform the

(
m
2
)

pairwise experiments
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again. Keep going until the last set of pairwise comparisons yields
a ranking. Bradley-Terry, Mallows’ φ and Mallows’ θ, component
and orthogonal contrast models are special cases.

• L-decomposable models (1.6.1). Perform the m− 1 experiments
ES1 , ES2 , . . . , ESm−1 , where xi = Outcome(ESi) and

Si+1 = Si − {xj | j = 1, . . . , i}.

Then the resulting ranking is x = (x1, . . . , xm−1, xm), where xm is
the object left in Sm. These models include:

– Babington Smith model in Section 1.5.1. The actual choice
probabilities are complicated. See Critchlow, Fligner, and
Verducci (1991).

– Luce model, which is also Plackett’s and Silverberg’s model
(1.6.3), where there are vi’s, positive, such that the probabili-
ties of the outcomes are given in (1.6.2).

– Component models in Section 1.6.2. Here, the probabilities
of outcomes are given by

PS(li) = hi(ui),

where ui+ 1 is the rank of li among the elements in S. The φ
component model is a special case, where the hi’s are given
in (1.6.5), and Mallows’ φ model is a further specialization,
where the θi’s in (1.6.6) are set equal.

Most Thurstonian and distance-based models are not of the above
form, except when they happen to coincide with the models just men-
tioned.

The choice-based ranking experiments based on choice experiments
can be looked at as hypothesized models for the way an individual
proceeds when asked to rank the objects, or as a method to design an
experiment to ascertain someone’s ranking by sequentially presenting
the subject with a number of choice experiments. Many other schemes
can be devised. For example, one might use an adaptive sequence of
paired comparisons chosen such that there is no chance for nontransi-
tivities to arise. A possible sequence, with the objects A, B, C, D and E,
is given in Table 2.2.

Such a scheme may be superior to Babington Smith, since it probabil-
ity takes fewer comparison’s (Babington Smith takes at least 10 (=

(5
2
)
),

and possibly a lot more), and superior to the L-decomposable schemes
since pairwise comparisons are generally easier to make.
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Experiment S Outcome Ranking so far
1 A,B A (A,B)
2 A,C A ??
3 B,C C (A,C,B)
4 A,D D (D,A,C,B)
5 D,E D ??
6 A,E A ??
7 C,E E (D,A,E,C,B)

Table 2.2: A possible ranking sequence

Note that the choice experiments above all involve choosing the one
best among the subset S. Another set of models can be built on experi-
ments in which one picks the one worst from S, or even the two best, or
four worst, etc. It is reasonable to suppose that actual ranking proceeds
with a complicated mixture of choice experiments. For example, one
might first decide which is worst of all, then divide the rest into three
groups, then within each group use a number of paired comparisons.
More research in this area would be interesting.

The conditional and multistage models referred to above are choice-
based. The Thurstonian models are not. In Thurstonian models, there is
just one response, Zli , for each object. The responses are noted, and the
ranking obtained by ordering the Zli ’s. Thus the ranking occurs as a
one-shot deal. For the choice-based models, one has to respond (possi-
bly) several times independently to each object. Of course, it is possible
that the individual choice experiments follow Thurstonian models, but
there is still a difference in choice-based ranking models and Thursto-
nian ranking models. To illustrate, suppose a Thurstonian model holds
for the responses to the stimuli (objects). Consider the Thurstonian
ranking model, and the L-decomposable model (1.6.1) where the choice
probabilities are given by the same Thurstonian model. Possible ways
to obtain the ranking (B, C ,D, A, E) from the two experiments:

Thurstone: Observe ZB < ZC < ZD < ZA < ZE;
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and

Model (1.6.1) :

1. Observe Z(1)
B < Z

(1)
D < Z

(1)
A < Z

(1)
E < Z

(1)
C , then

2. Observe Z(2)
C < Z

(2)
E < Z

(2)
D < Z

(2)
A , then

3. Observe Z(3)
D < Z

(3)
E < Z

(3)
A , and, finally

4. Observe Z(4)
A < Z

(4)
E .

All the Z(k)
li

’s are independent. In general, it should be clear that the
probabilities of the ranking under the two models need not be at all the
same. What is amazing is that they can be:

Lemma 2.3.1. Suppose the Thurstonian model (1.4.2) holds, where the −Zli ’s
are Gumbel random variables. Then the Thurstonian ranking model and the
L-decomposable model (1.6.1) yield the same distribution on Lm.

I am inclined to see this result as a bit of a fluke, rather than one
that reveals a deep connection between these models. I may be wrong.
A corollary to the lemma says that if the Zli ’s themselves are Gumbel,
then the model is equivalent to the backwards analog of (1.6.1), that is,
one first chooses the worst of all, then the worst of what remains, etc.

2.4 Luce’s choice axiom: Backwards and forwards

In Section 1.6.1, Luce’s choice axiom was presented as a reasonable ax-
iom for a person’s choice probabilities to satisfy. These probabilities are
for choosing the best one of a subset of objects. By the same token, it
may also be reasonable to expect choice experiments in which the per-
son chooses the worst one of a subset to satisfy the axiom. Replace the
one set of choice probabilities in (2.2.1) with the two sets

p ≡ {{pS(r) | r ∈ S} | S ⊂ O} and q ≡ {{qS(r) | r ∈ S} | S ⊂ O},

where

QS(r) = Prob[Object r is the least preferred among those in S].

Make the following assumptions:

(1) Both p and q satisfy Axiom 1.6.1.

(2) P{r,s}(r) > 0 for all r, s ∈ O.
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(3) For any ordering of any subset of objects, the forward and back-
ward choice-based probabilities are the same.

Luce (1959, page 57) shows that if m > 3, no Thurstonian model
yields choice probabilities that satisfy all three assumptions. Yellott
(1977) amplifies on this result by noting that because the axiom holds
for a Thurstonian model for p if and only if the Zli ’s are Gumbel, it
holds for q if and only if the Zli ’s are negatives of Gumbels. Since
Gumbels are not symmetric, the axiom cannot hold for both p and q.
(An exception is if all the µli ’s are equal, in which case the model is
just the uniform model.) Luce and Yellott seem to take this result as a
strike against Thurstonian models. However, without any reference to
Thurstonian models, we have the following.

Lemma 2.4.1. Suppose Assumptions 1, 2 and 3 hold. Then all objects are
equally preferred, i.e., PS(r) = QS(r) = 1/#S for all r ∈ S ⊂ O.

Proof. Assumptions 1 and 2 imply that (1.6.2) holds, and analogously,
that there exist positive uli ’s such that

QS(li) =
uli∑
lj∈S ulj

. (2.4.1)

Assumption 3 implies that P{r,s}(r) = Q{r,s}(s), which can be used to
show that without loss of generality we can take vli = 1/uli . Now try
ranking three of the objects, A, B, and C, using the forward choice-based
experiment (1.6.3); also, using the backward choice-based experiment.
The probability of a given ordering is the same no matter which method
is used. Thus, e.g.,

Prob[x = (A,B,C)] = P{A,B,C}(A)P{B,C}(B)

= Q{A,B,C}(C)Q{A,B}(B).

Letting vA = uA = 1, (1.6.2), (2.4.1), and (2.4.2) can be used to show
that vC = v2

B. Doing the same for P[x = (A,C,B)] shows that vB = v2
C.

Thus it must be that vB = vC = 1 = vA, hence uA = uB = uC = 1. The
same argument shows that in fact vli = uli = 1 for all objects li.

What are the implications of the lemma? Since no non-uniform
model can satisfy the three assumptions, it is hardly fair to blame Thur-
stonian models for being unable to satisfy them. Actually, the lemma
shows that whatever leads one to accept the axiom for p must not lead
one to accept it for q unless one believes the uniform model. Thus what
may at first seem like a rather innocuous axiom is quite strong, and one
may be tempted to not expect models to adhere to it strictly.
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2.5 Unidimensionality, unimodality and consensus

The idea that there is an overall ranking for the objects is very impor-
tant in ranking situations. For example, in competitions, several judges’
rankings must be combined into one overall ranking; in sociology, the
problem is that of arriving at a social consensus. The question can also
be asked of an individual, that is, whether after repeated observations
of the person’s rankings, one can ascertain an overall ranking. Basically,
one is asking for a placing of the objects on a one-dimensional scale,
where objects on the left are more likely to be preferred.

There are a number of ways to define an overall ranking given a set
of rankings or a distribution on Pm that yield a result no matter how
inconsistent the individual rankings may be. Thus one actually desires
more than just a composite ranking; one wishes to be assured that the
ranking tells the whole story. Some intuitive notions of what is meant
by “telling the whole story” include

1. Objects with lower overall rank are more likely to be preferred
than those with a higher overall rank in paired comparisons. (If
one object is preferred to all others in paired comparisons, it is
called the Condorcet choice. See Wikipedia (2017).)

2. An object being #1 means that it is most likely to be ranked first,
second most likely to be ranked second, . . . , and least likely to be
ranked last. Similarly, the #2 object is second most likely to be
ranked #1, . . . , and second least likely to be ranked last. Etc.

3. There is no interaction among objects in that the relative prefer-
ence of two objects is not affected by the relative ordering of the
others.

It is not hard to find examples in which these notions are violated.
For example, number 1 need not hold since it could be that A has
a lower average rank than B, but in paired comparisons most people
prefer B to A. Number 2 is easily violated. For example, suppose
P[(A,B,C)] = 0.55 and P[(C,B,A)] = 0.45. Though A is more likely
to be #1 than B is (B is never #1), A is also more likely to be #3 (B is
never #3). Number 3 avoids situations such as having 7-up preferred to
Sprite when Coke is ranked first, but Sprite is preferred to 7-up when
Coke is ranked second.

Next, some requirements are presented that try to formalize the in-
tuitive ideas above. The properties below are formulated in terms of the
probability density f on the ranks y ∈ Pm, where the ordering x is fixed
at (l1, l2, . . . , lm).
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• Unimodality. The density f is unimodal if there exists one ranking
µ that has higher probability than any other, i.e., f(µ) > f(y) for
all y ∈ Pm − {µ}. The ranking µ is the modal ranking.

• Strong unimodality with respect to a given partial ordering <∗.
The density is strongly unimodal with respect to <∗ if it is uni-
modal, and whenever µ <∗ y <∗ z, f(y) > f(z).

• Order in expectation. The objects are said to be ordered in expec-
tation if E[Y1] < E[Y2] < · · · < E[Ym].

• Marginal stochastic ordering. The objects are marginally stochas-
tically ordered if the marginal distributions of the Yi’s are distinct,
and for any number k, P[Y1 6 k] > P[Y2 6 k] > · · · > P[Ym 6 k].

• Consensus. The ordering is a consensus ordering if P[Yi < Yj] >
1/2 for all i < j.

• Complete consensus. There is complete consensus about the or-
dering if for all i < j

P[Yi < Yj |Yk = rk, for all k 6= i, j) > 1/2

for all sets of ranks rk.

See Critchlow, Fligner, and Verducci (1991), Henery (1981), and
Fligner and Verducci (1988). In this section, we will refer to these three
papers as CFV, H, and FV, respectively. The definition of consensus here
differs from that in FV.

Unimodality and order in expectation are very weak properties.
They are satisfied as long as there are enough differences among the
probabilities of the rankings. They do not require any real cohesion
among the rankings. Marginal stochastic ordering and consensus are
stronger conditions, but do not eliminate the possibility of interactions
among the objects. For example, one might prefer A to B 95% of the
time if C is ranked third, but prefer B to A 55% of the time when C
is ranked first. Strong unimodality (with nontrivial <∗) and complete
consensus do restrict the possible interactions, at least qualitatively.

Different partial orderings<∗ yield different strong unimodalities, of
course. We will give three possibilities, all based on the modal ranking
being µ = (1, 2, . . . ,m). (If µ is not (1, 2, . . . ,m), relabel the objects so
that it is.) CFV suggest y <CFV z if for some i < j,

yj = zi = yi + 1 = zj + 1 and yk = zk for k 6= i, j.

H’s ordering says y <H z if

yj = zi < yi = zj and yk = zk for k 6= i, j.
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Model Number associated with object li See
Thurstone µli (1.4.1), (1.4.2)
Bradley-Terry 1/vli (1.5.3)
Plackett-Luce 1/vli (1.6.3)
Distance-based µi Section 1.8.2
φ component θi (1.6.6)

Table 2.3: Some item parameters

Kendall’s τ ordering says y <K z if d(µ,y) < d(µ, z), where d is
Kendall’s τ metric as in Section (1.8.2). Other orderings immediately
arise from other distances. The partial orderings are themselves or-
dered:

[y <CFV z] =⇒ [y <H z] =⇒ [y <K z].

The idea is that for CFV, if two rankings are identical except for two
objects with adjacent ranks, then the one with the two objects in the
wrong order (with respect to µ) is farther from µ than the other. The
H ordering is similar, except that the requirement that the ranks have
to be adjacent is dropped. The K ordering just looks at the number of
discordances between µ and each of the rankings.

Some implications:

Complete consensus ⇐⇒ Strong Unimodality[<H]

=⇒


Unimodality
Marginal stochastic ordering

=⇒ Order in Expectation
Consensus

Unidimensionality is not precisely defined, but the idea is that there
is a real number attached to each object, and the lower the number the
more likely the object will be preferred. CFV call these numbers item
parameters. In Table 2.3, these parameters are exhibited for some of the
models in Chapter 1.

Now to see which models satisfy which of the unimodality and con-
sensus conditions.

Thurstonian models withZ of the form (1.4.2) have complete consensus
if µl1 < · · · < µlm , and the density g has monotone likelihood ratio, i.e.,

g(z− µli)

g(z− µlj)
is decreasing in z for i < j.
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See H. Even without the monotone likelihood ratio property, any Thur-
stonian model with the µli ’s strictly increasing will have marginal sto-
chastic ordering, hence order in expectation. See CFV.

Babington Smith models do not have item parameters in general. How-
ever, there are notions of qualitative ordering. A Babington Smith model
has weak stochastic transitivity if for i, j,

plilj >
1
2

and pljlk >
1
2

=⇒ plilk >
1
2

, (2.5.1)

and has strong stochastic transitivity if

plilj >
1
2

and pljlk >
1
2

=⇒ plilk > max{plilj ,pljlk }. (2.5.2)

See David (1988) for these definitions. CFV show that a Babington Smith
model is strongly unimodal [<CFV ] if and only if it has weak stochastic
transitivity, and if it has strong stochastic transitivity, it has complete
consensus.

Bradley-Terry and Plackett-Luce models show complete consensus
whenever vl1 > vl2 > · · · > vlm . See H and CFV.

Distance-based models show complete consensus whenever f(y) de-
creases as d(µ,y) increases, and y <H z implies that d(µ,y) < d(µ, z).
It has already been noted above that the Kendall’s τ distance has this
property, hence Mallows’ φ model has complete consensus if the pa-
rameter γ < 0. Also, if γ > 0, the model has complete consensus but
with the modal ranking being the opposite of µ, which is (m + 1 −
µ1, · · · ,m− 1 − µm). Spearman’s ρ and footrule distances, Hamming
distance, and Ulam distance have this property, as well.

The φ component model (1.6.6) has complete consensus if θi/θi+1 >
((m− 1) − i)/(m− i) for i = 1, . . . ,m− 2. See FV, Theorem 2.3.

Orthogonal contrast models in general do not lend themselves to
such unidimensionality questions. In fact, part of their usefulness lies
in being able to capture interesting deviations from consensus and uni-
modality. See Section 1.8 for some other such models. Unfolding mod-
els fit in to this framework by considering the mixture model (1.9.1).
The idea is that for a given unfolding scale, there are

(
m
2
)
+ 1 possible

rankings, and for each of these rankings there is a population of judges
and corresponding distribution of rankings. Consensus, unimodality
and the other properties are said to hold for the model (1.9.1) if they
hold for each of the subpopulations, where the modal ranking is that
from the unfolding scale connected with that population.
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Name See p Parameters Statistics

Babington Smith (1.5.2)
(m

2
)

log
(
plilj

1−plilj

)
I[yi < yj]

Bradley-Terry (1.5.3) m− 1 log(vli) m− index(xi)
Mallows’ φ (1.5.5) 1 γ dK(x)
Mallows’ Θ (1.5.7) 1 γ s(x)

Free component (1.6.4)
(m

2
)

log
(

hi(j)
hi(m−i)

)
I[ui = j]

φ component (1.6.6) m− 1 θ u
φ orthogonal

contrast (1.6.9) m− 1 θ d(Ci(y))

Contingency
table Section 1.6.3 Lots Loglinear Cell counts

Table 2.4: Some sufficient statistics

2.6 Regular exponential families

Section 1.8 presented exponential family models. For ranking models,
a regular exponential family has the form (1.8.2) with the additional
requirements that

1. The parameter space Θ is Rp;

2. The distribution is identifiable, i.e., if θ1 6= θ2, then the densities
fθ1 and fθ2 are different.

The reason for number 1 is that any of the ranking models is a sub-
model of the saturated model, which is an exponential family model
with p = m! − 1, so that if any type of parameter space is allowed,
all models are exponential family models. Number 2 just makes sure
that there are no superfluous dimensions in θ. In a regular exponential
family, p is referred to as the dimension of the model.

Many of the models in Chapter 1 are regular exponential family
models. The ones in Sections 1.8.1 and 1.8.2 are because they con-
structed to be. About the only ones that are not are the Thurstonian
models and some of the L-decomposable models such as Plackett-Luce.
Table 2.4 exhibits the regular exponential models. The statistics are
given for one observed ranking. The statistics for a sample consist of
the sums of the statistics for the individual observations. Note that the
free orthogonal contrast model is a contingency table model.
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2.7 Hierarchical systems of models

Most of the models so far assume limited interactions among objects,
as in Section 2.5. In many data sets, it is the interactions that are of
interest. Thus there has been some effort in finding classes of models
that mimic analysis-of-variance and categorical loglinear models, where
one first tries no-interaction models, then models with two-way interac-
tions, then three-way, and so on, until arriving at the saturated model.
The object is to find the simplest model that fits. The contingency table
model based on orthogonal contrasts in Section 1.6.3 is one such model.
In this section, more systems are presented.

The general structure for each system below is that, for each order
k, there exists a set of parameters that capture all the interactions of
the objects up to the kth order, where “order” has different meanings
for different systems. The 0th-order model is the uniform model, and
the highest-order model is the saturated model. There is a hierarchy
to each system in that the lower-order models are all contained in the
higher-order ones.

In the Plackett system, the kth order refers to the probability that
each set of k objects is ranked #1 to #k. The model of Holland-Silverberg
and Diaconis-Verducci is more general in that it considers every possible
placement of the k objects in the ordering, not just at the beginning.
The extensions of Babington Smith uses relative orderings of sets of
objects instead of absolute placements. McCullagh (1993) systematizes
this set by defining inversions. The orthogonal contrast contingency
table approach is different than the others since the interactions are of
contrasts of objects rather than of the objects themselves.

2.7.1 Plackett

The Plackett-Luce model (1.6.3) is the first order model for Plackett’s
(1975) system of hierarchical models. The model is defined on order-
ings, so the ranking y is fixed at (1, 2, . . . ,m). Let the probability of the
ordering x ∈ Lm be p(x) = p(x1, x2, . . . , xm), and for any k, let

p(x1, . . . , xk) =
∑
yk+1

· · ·
∑
ym

p(x1, . . . , xk,yk+1, . . . ,ym)

≡ p(x1, . . . , xk,+, . . . ,+)

= P[x1 is ranked first, . . . , xk is ranked kth].

The second line gives the analog of analysis-of-variance notation. The
idea in the horse-race paradigm is that the probability of finishing first
is proportional to the probability of finishing second if another horse
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finished first, etc. This idea is formalized by demanding that

p(x1, . . . , xk−1,a)
p(x1, . . . , xk−1,b)

=
p(a)

p(b)

for all k,a,b, x1, . . . , xk−1.
Second-order models allow interactions between first and second

places. That is, the probability that two objects are ranked first and
second is proportional to the probability that they are ranked second
and third given another object was ranked first, etc. Third-order inter-
actions are defined by the probabilities that three objects are ranked 1,
2, and 3, etc. Formally, the lth-order model demands that

p(x1, . . . , xk−1,a1, . . . ,al)
p(x1, . . . , xk−1,b1, . . . ,bl)

=
p(a1, . . . ,al)
p(b1, . . . ,bl)

for all k,a ′is,b
′
is, x

′
is.

Given a set of probabilities, it is straightforward to check whether
any of the lth-order models hold. However, one would also like to have
a parametric representation of the models so that given the parameters,
all the probabilities can be constructed. Plackett gives such parameters
in terms of logs of ratios of the probabilities, hence calls the model a
logistic model. It has nothing to do with the Thurstone-Gumbel-Luce
model. The parameters he uses are

λ(a1, . . . ,al−1,b) ≡ log
(
p(a1, . . . ,al−1,b)p(a2, . . . ,al−1, c)
p(a1, . . . ,al−1, c)p(a2, . . . ,al−1,b)

)
,

where

c = max[{1, 2, . . .m}− {a1, . . . ,al−1}] & b ∈ {1, 2, . . . ,m}− {a1, . . . ,al, c}.

The lth-order model is obtained by setting all the λ’s with more than l
components to 0.

2.7.2 Holland-Silverberg/Diaconis-Verducci

Plackett’s model allowed objects to interact, but only when they are
ranked consecutively. More general two-way interactions may also be
extant, such as the number of times objects a and b are ranked i and j for
any i and j, as well as extensions to three- and higher-way interactions.
A number of exponential family models have been suggested to capture
these interactions.

Start with first-order (no interaction) models. Silverberg (1980; 1984),
Paul Holland (Silverberg’s Ph.D. advisor), and Verducci (1982) take as
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sufficient statistics

S(y1, . . . ,yn ; li ; j) ≡ #{q |yqli = j}, (2.7.2)

which is the number of observations yq that give object li the rank
j. The number of free parameters in the regular exponential family is
(m− 1)2 since the sum of S(· ; li ; j) over any i or j is n. This model is
more flexible than the Plackett first-order model, and the other models
in the previous section, since it does not demand any unimodality.

Second- and higher-order models look at the rankings of groups of
objects. The sufficient statistics for the kth-order model are

S(y1, . . . ,yn ; li1 , . . . , lik ; j1, . . . , jk) ≡ #{q |yqli1 = j1, . . . ,yqlik = jk},

for all subsets {li1 , . . . , lik } ⊂ O and {j1 < . . . < jk} ⊂ {1, 2, . . . ,m}. These
statistics count the number of observations in which each set of objects
receives each possible set of ranks. The dimension of the regular expo-
nential family grows quickly with the order k, and it is not immediate
how to find the dimension. Diaconis (1988; 1989) uses spectral analy-
sis for the permutation group to find these dimensions as well as finer
splittings of the models. This work is very interesting, but I do not un-
derstand it totally. The idea is that any function on Pm can be written
as a linear combination of a number of functions, each corresponding to
an invariant subspace of the space of all functions. This decomposition
is analogous to the splitting of a time-series into components due to
various frequencies, or an analysis-of-variance splitting into main, two-
way, three-way, . . . , effects. For each subspace, one can find a basis and
use the coefficients of the basis vectors for the function c(y) = #{obser-
vations with rank vector y} for sufficient statistics. Verducci (1982) fits
some exponential family models and submodels using these statistics

Diaconis gives a detailed analysis of an m = 5 example. The first
subspace is just the constant function. The second yields the first-order
statistics (2.7.2). The third and fourth subspaces yield the second-order
statistics, where the third has functions that ignore the order of the ob-
jects, and the fourth does not. There are three other subspaces that take
care of any further interaction. The dimensions of the seven subspaces
are, respectively, 1, 16, 25, 36, 25, 16 and 1. Thus the second-order model
has dimension 1 + 16 + 25 + 36 = 78.

Silverberg calls the models loglinear models since one can choose
parameters of which log(P[X = x])’s is a linear function, analogous to
loglinear models in contingency tables. With parameters

α(li1 , . . . , lik ; j1, . . . , jk),

the first-order model is

log(P[x = x]) = α0 +α(l1 ; 1) +α(l2 ; 2) + · · ·+α(lm ; m).
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Objects in x-order Objects in original order Inversion?
BDA ABD Yes
BDE BDE No
BDC BCD No
DAE ADE No
DAC ACD Yes
AEC ACE No

Table 2.5: Second-order inversions in x = (B, D, A, E, C)

The α0 is the 0th-order effect. It equals log(1/m!) in the 0-order model.
The second-order model is

log(p(l1, . . . , lm)) = α0 +

m∑
i=1

α(li ; i) +
∑
i<j

α(li, lj ; i, j).

Constraints have to be placed on the parameters for them to be es-
timable, which constraints do not seem to be easily described without
referring to Diaconis’s theory.

2.7.3 Extended Babington Smith — McCullagh’s inversion
models

Babington Smith models have as sufficient statistics the number of times
object li is preferred to object lj, i < j. One can also look at sets of more
than two objects, and the relative order within each set. Thus there are(
m
3
)

sets of three objects, and each set can be put in 3! = 6 orders. The
sufficient statistics for these count how many observations have each
set of three objects in each possible order. Similarly for sets of any k
objects. The dimensions of the corresponding parameter spaces and the
summarization of the statistics appears complicated.

McCullagh (1993) has a systematic approach that produces interpret-
able parameters. Starting with a given ordering of the objects, he defines
inversions for sets of objects to be orderings in which none of the objects
are in their original spots. That is, suppose 5 objects start in the order A,
B, C, D, E. Take any other ordering x. First order inversions are those
pairs of objects that, in x, are in an order different than the original
order. Thus if x = (B, D, A, E, C), then there are 4 first-order inversions:
BA, DA, DC, and EC. Second-order inversions are triples of objects in
which all three objects are in the wrong slot. The Table 2.5 gives the
possible triples, their original order, and whether there is a second-order
inversion.
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Third-order inversions are sets of four objects in which none are in
the original slot, etc. The kth-order inversion model has as sufficient
statistics all the number of occurrences of each inversion of order less
than or equal to k. McCullagh shows that the number of inversions of
order k− 1 involving exactly k of the objects is(

m

k

)
k!
(

1
2!

−
1
3!

+ · · · ± 1
k!

)
.



Chapter 3

Testing and Estimation

3.1 Likelihood methods

Likelihood methods such as maximum likelihood estimation (MLE) and
likelihood ratio testing (LRT) have proven to be extremely useful for in-
ference in general models. There are many examples in which likeli-
hood methods fail, or can be much improved, or are extremely difficult
to implement computationally. However, for most of the ranking mod-
els we are considering, they work remarkably well. This section gives
an introduction aimed at rank models.

The observations take values in the finite set Am with M elements.
For a typical ranking model, Am is the set of rankings Pm or orderings
Lm, and M = m!. There is a corresponding vector p of probabilities,
where pa is the probability the observation is element a. The space of
p is the M-dimensional simplex

SM = {p ∈ RM |pa > 0 for all a ∈ Am, and
∑
a∈Am

pa = 1}.

For an iid sample W1, . . . ,Wn, we have

K ∼ MultinomialM(n,p), where Ka = #{Wi = a}.

3.1.1 Regular models

A model for the multinomial distribution is given by specifying a sub-
set of SM to which p is restricted. We will be mainly concerned with
regular models, which will be defined in this section.

39
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Start with a parametrization of the model, that is, assume there exists
a p-dimensional vector θ with space Θ and a function

p(θ) : Θ −→ SM,

the model allows p to have the range

{p(θ) ∈ SM |θ ∈ Θ}.

The following regularity conditions are required of a regular model.

Regularity conditions.

1. Identifiability: If θ1 6= θ2, then p(θ1) 6= p(θ2) for θ1,θ2 ∈ Θ.

2. Θ is an open subset of Rp.

3. As functions of θ, the pa(θ)’s have that all first, second and third
(mixed) partial derivatives are continuous in θ.

4. For every a and θ, pa(θ) > 0.

The fourth condition is actually redundant since SM requires the
pa’s to be positive. These conditions are automatically satisfied by reg-
ular exponential families as in Section 2.6, and in fact by almost all the
models except the mixture models for unfolding scales. Thurstonian
models may also violate the assumptions if the distributions of Z are
irregular.

3.1.2 The likelihood function and Fisher information

The likelihood function L is a function of θ for fixed value of the data k.
It is proportional to the density, i.e.,

L(θ ; k) =
n∏
i=1

fθ(wi) =
∏
a∈Am

pa(θ)
ka . (3.1.1)

The loglikelihood is

l(θ ; k) = log(L(θ ; k)) =
∑
a∈Am

ka log(pa(θ)). (3.1.2)

The values of L are supposed to measure how ”likely” various values
of θ are in light of the particular data k. If L(θ1 ; k) = 2L(θ2 ; k), then
θ1 is twice as likely to be the true θ as θ2. The maximum likelihood
estimate (MLE) of θ based on k is the value of θ ∈ Θ that maximizes
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the likelihood. Denote it by θ̂. It may be that there is no maximum, or
the maximum is not unique, or the maximum lies outside of Θ. In such
cases, the MLE does not exist.

If the MLE does exist, then for a regular model, the derivatives of l
are zero at θ̂, that is,

∇l(θ̂ ; k) = 0 ; (∇l(θ̂ ; k))j =
∂

∂θj
l(θ ; k) for 1 6 j 6 p. (3.1.3)

The first equation in (3.1.3) is termed the likelihood equation(s).
Once the θ̂ is obtained, it is also of interest to ascertain how confident

one should be in it as an estimate. The likelihood approach is to look
at the likelihood for values of θ near θ̂. If the likelihood tends to drop
off precipitously, then one is quite sure of the estimate. If the likelihood
is relatively flat around the MLE, then there are many other estimates
which are nearly as likely as the MLE, hence not as much reliance can
be put in the estimate. One way to measure how quickly the likelihood
falls off is to look at the second derivative matrix. If it is large negative,
then the likelihood has a relatively large amount of information. If it
is near 0, then the likelihood has little information. Thus the bfseries
observed Fisher information is defined to be

În(θ̂) = −

{
∂2

∂θi∂θj
l(θ;k)|

θ=θ̂

}p
i,j=1

. (3.1.4)

(It is the matrix of partial second derivatives.)
The În is a data-dependent measure of information. The corre-

sponding population quantity is the expected Fisher information, which
is the information about θ one expects from a sample. It is usually called
the Fisher information. The Fisher information for one observation is
defined to be

I1(θ) = −

{
Eθ

[
∂2

∂θi∂θj
l(θ ; W1)

]}p
i,j=1

, (3.1.5)

and the information for the sample of n observations is

In(θ) =

{
Eθ

[
∂2

∂θi∂θj
l(θ ; K)

]}p
i,j=1

= nI1(θ).

3.1.3 Maximum likelihood estimation

In the previous section, the MLE was defined to be the value of θ which
maximizes the likelihood (3.1.1). In a regular model, if it exists it satis-
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fies the likelihood equations (3.1.3). In this section, we present asymp-
totic results for the MLE, asymptotic as n → ∞. In order to state the
result, we will assume the following additional regularity conditions.

5. For any θ, Pθ[The MLE exists]→ 1 as n→∞.

6. For any θ, the Fisher information I1(θ) is finite and invertible.

The main result is the next theorem. Proofs of this and similar theo-
rems can be found in Rao (1973) and Lehmann (1983).

Theorem 3.1.1. Suppose the regularity conditions 1 through 6 hold. Then as
n→∞, √

n(θ̂(K) − θ) −→ N(0, I−1
1 (θ)),

where θ̂ is the MLE when it exists, and any arbitrary value when it does not.
Also,

În(θ̂)

n
−→ I1(θ) in probability.

The value of the theorem lies in the fact that for any regular model,
the distribution of the MLE can be approximated by a normal with
covariance matrix being the inverse of the observed Fisher information,
i.e.,

θ̂(K) ≈ N(θ, Î−1
n (θ̂)).

If you think about this result, it is amazing.

3.1.4 Likelihood ratio tests

It often (always?) happens that one has more than one model in mind,
and wishes to find which is best. One model may be the same as another
but for a restriction on the parameter, such as θ1 = 0, or it may be that
the models have different parametrizations. Here, we present a result
for testing two nested models, nested in the sense that the set of allow-
able p’s for one is strictly contained in that for the other. Specifically,
we assume that we have two regular models, both satisfying conditions
1 through 6. Let the smaller one have parametrization τ ∈ T, where τ
is q× 1, and corresponding probabilities q(τ ), and the larger one be as
in (1.3.1), where q < p. The containment is

{q(τ ) | τ ∈ T} ⊂ {p(θ) |θ ∈ Θ}.

The hypothesis test of interest tests

H0 : The τ -model holds versus HA : The θ-model holds. (3.1.6)
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Let l0 and lA be the respective loglikelihoods (3.1.2) for the two hypoth-
esized models. The likelihood ratio test compares the best likelihood
under the null model to the best under the alternative model. The latter
will always be at least as large than the former since there is a larger
family of distributions. The question is how much larger must it be for
us to reject the null model in favor of the alternative? It is convenient to
consider the likelihood ratio statistic

LRSn(k) ≡ 2(lA(θ̂ ; k) − l0(τ̂ ; k)).

Theorem 3.1.2. Under the above assumptions, if H0 in (3.1.6) holds, then as
n→∞,

LRSn(K) −→ χ2
p−q in distribution.

From (3.1.2), it is easy to show that

LRSn(k) = 2
∑
a∈Am

ka log

(
pa(θ̂)

qa(τ̂ )

)

= 2
∑

OBS · log
(
EXPA
EXP0

)
. (3.1.7)

The last expression is a common mnemonic, where OBS refers to the
observed counts, and EXP0 and EXPA to the expected counts under the
null and alternative hypotheses, respectively.

Even if one has only one model to consider, there are two particular
hypothesis tests one usually performs. Suppose the model has the θ-
parametrization. The first is to see whether there is “anything going
on,” that is, to see if it is possible that the uniform model holds. Then
the H0 model in (3.1.6) has q=0, the only allowable distribution being
the uniform, qa = 1/M for all a. Thus the statistic (3.1.7) is

LRSn(k) = 2
∑

OBS · log
(
EXPA
EXP0

)
, EXP0 ≡

n

M
.

If it is not sufficiently large (> χ2
p,α) then one cannot conclude that the

model is any better than the uniform. The other important test is the
goodness-of-fit test. That is, is there anything going on that the model
does not detect? Now the θ-model is the H0 model, and the HA model
is the saturated model. The saturated model has dimension M− 1 since
it can be parametrized by p1, . . . ,pM−1. It can be shown that the MLE
of pa under the saturated model is ka/n. Thus the goodness-of-fit test
statistic is asymptotically χ2

M−1−p under H0, and can be written

LRSn(k) = 2
∑

OBS · log
(
OBS

EXP

)
.



44 CHAPTER 3. TESTING AND ESTIMATION

An alternative statistic, which has the same asymptotic null distribution,
is the Pearson chi-squared

∑
(OBS− EXP)2/EXP, which may be more

familiar. They are equally fine.
Nested sequences of models are important, especially when using

hierarchical systems of models. For example, one might consider the
sequence of models

Uniform ⊂Mallows’ θ ⊂ Bradley-Terry
⊂ Babington Smith ⊂ Saturated. (3.1.8)

The number of parameters for these are 0, 1, m − 1,
(
m
2
)

and m! − 1,
respectively. A nice property of the LRSs for testing pairs of models in a
sequence is additivity: If LRS(Mi,Mj) is the LRS for testing model Mi
versus model Mj, then

LRS(M1,M3) = LRS(M1,M2) + LRS(M2,M3).

Thus for the sequence in (3.1.8), one can decompose the overall lack of
uniformity in the data, i.e., the LRS for testing uniform versus saturated,
into pieces which measure the additional amount of fit explained as one
moves along the sequence:

LRS(U,S) = LRS(U,M) + LRS(M,BT) + LRS(BT ,BS) + LRS(BS,S).

Of course, when one performs a number of tests, one has to worry about
the multiple comparisons problem.

3.2 Exponential families

A regular exponential family as in Section 2.6 automatically satisfies all
the regularity conditions in Section 3.1.1. Here, a p-dimensional expo-
nential family will have sufficient statistic t(wi) for each observation, so
that the density is

fθ(wi) = f0(wi)e
θ ′t(wi)−ψ(θ), (3.2.1)

where θ ′t =
∑
θiti, f0 is a (null) density for Wi, and ψ is whatever is

needed for the density to sum to 1, i.e.,

ψ(θ) = log

 ∑
a∈Am

f0(a)e
θ ′t(a)

 .

Differentiating ψ shows that

β(θ) ≡ Eθ(t(Wi)) =
{
∂ψ(θ)

∂θj

}p
j=1
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and

Σ(θ) ≡ Covθ(t(Wi)) =
{
∂2ψ(θ)

∂θj∂θk

}p
j,k=1

. (3.2.2)

Thus the mean and the covariance matrix of the sufficient statistic vector
can be found by differentiating rather than integrating.

Now from (3.1.1) and (3.2.1), the loglikelihood for the data is

l(θ ; k) =
n∑
i=1

θ ′t(wi) −nψ(θ) +C

= θ ′s(k) −nψ(θ) +C, (3.2.3)

where s is the vector of sufficient statistics for the sample, s(k) =∑
t(wi), and C(=

∑
log(f0(wi))) is a constant independent of θ. The

likelihood equations (3.1.3) are thus 0 = ∇l(θ̂,k)= s−nβ(θ̂), or

β(θ̂) =
s

n
. (3.2.4)

That is, the MLE of θ is that value for which the population mean of the
sufficient statistic equals the sample mean of the t(wi)’s. In a way this
result should not be too surprising since in Section 1.8 it was noted that
the exponential family is chosen so as to satisfy (3.2.4).

Next, to find the observed and expected Fisher information, use
(3.1.4) and (3.1.5) on (3.2.3). The first term drops out since it is lin-
ear in θ, and what are left are second derivatives of −ψ, so that from
(3.1.4) and (3.2.2),

În(θ̂) = nΣ(θ̂) and I1(θ) = Σ(θ).

The dual central limit theorems for exponential families are

√
n

(
S

n
−β(θ)

)
−→ N(0,Σ(θ)) and

√
n(θ̂− θ) −→ N(0,Σ−1(θ)).

Those familiar with the ∆-method will realize these are the same theo-
rem.

3.3 Finding the MLE

It is typical that the likelihood equations (3.1.3) cannot be solved in
closed form, so that some numerical methods must be employed. A
very appropriate method for current purposes is the Newton-Raphson
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method. In one dimension, it is derived as follows. Suppose the objec-
tive is to find θ̂ so that h(θ̂ = 0 for a given function h. Expand h around
θ̂ = θ in a Taylor Series:

h(θ̂ = h(θ) + (θ̂− θ)h ′(θ) + Remainder. (3.3.1)

If the remainder is small, then since h(θ̂ = 0, solving for θ̂ gives

θ̂ ≈ θ− h(θ)

h ′(θ)
.

The Newton-Raphson method starts by guessing a value for θ̂, say θ1.
If h(θ1) = 0 then θ̂ = θ1. If not, use (3.3.1) with θ = θ1 to find a
better guess for θ̂. Call it θ2. One continues until h(θi) is close enough
to 0, where for i > 2, θi = θi−1 − h(θi−1)/h

′(θi−1). It could be that
the sequence θi does not converge, or it converges to a root of h other
than θ̂. Books on numerical analysis contain numerous conditions for
convergence to be guaranteed. The multivariate version has θ and h
being p-dimensional, so that the h ′ becomes a matrix of derivatives,
and the equation is

θi = θi−1 − [h ′(θi−1)]
−1h(θi−1).

In finding MLE’s, the h is ∇l(θ,k), the vector of derivatives of the
likelihood function (3.1.3). Note that the matrix [h ′(θ̂)]−1 is −În(θ̂) of
(3.1.4). The MLE θ̂ is found by iterating

θi = θi−1 + Î
−1
n (θ̂)∇l(θi−1,k).

In the exponential family case, this simplifies further to

θi = θi−1 + Σ
−1(θi−1)

(
S

n
−β(θi−1)

)
.

A possible drawback to the Newton-Raphson method occurs when
p is large, so that În may be difficult to invert. There are many modi-
fications and other possible methods. In the next four sections we give
some methods which are useful in specialized contexts.

3.4 Iterative proportional fitting

Iterative proportion fitting is a method to find the MLE’s of p(θ) rather
than the θ directly. It avoids any matrix inversions. It works only in ex-
ponential family models for which the sufficient statistics are categorical
in nature.
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A categorization of the sample space Am is a partition I = (I1, . . . ,
IK) of the elements a ∈ Am. That is, the subsets Ik’s are nonempty and
disjoint, and their union is the set Am. (These Ik’s are different than
those for orthogonal contrast models in Section 1.6.3. There, the Ik’s
were groups of objects; here, they are groups of rankings.) The statistic
SI(k) corresponding to the categorization I is defined by

SI(k) =

∑
a∈I1

ka, · · · ,
∑
a∈IK

ka

 ,

which are the numbers of observations in each of the categories Ik.

Categorization assumption. We assume we have L categorizations,
I1, . . . , IL. The model is a regular exponential family with sufficient
statistic being the reduced set S of counts (SI1 , . . . ,SIL).

By ”reduced set” we mean the smallest subset of the counts such
that all the counts can be obtained from the smaller set and the number
n by addition or subtraction. The reason is that without reduction, the
exponential family will not be identifiable.

Example. In a 2× 3 contingency table, we have M = 6. Number the
cells:

1 2 3
4 5 6

Consider the two categorizations

Irow = ({1, 2, 3}, {4, 5, 6} and Icolumn = ({1, 4}, {2, 5}, {3, 6}.

The total set of counts is

(n1 +n2 +n3, n4 +n5 +n6, n1 +n4, n2 +n5, n3 +n6).

However, we can obtain all those counts from the reduced set S = (n1 +
n2 +n3,n1 +n4,n2 +n5). The model resulting from S is the model with
row and column independence.

Suppose the categorization assumption holds. The MLE of p can be
found by starting with an M× 1 vector of 1’s and iteratively changing
the vector so that it conforms to the sufficient statistics. More specifi-
cally, let ν be any M× 1 vector. A new vector ν∗ is obtained using the
categorization I as follows:

ν∗ = IP(ν; I)
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where for each Ik in I ,

k∗a = ka

∑
j∈Ik kj∑
j∈Ik νj

= ka
[SI(k)]k
[SI(ν)]k

for a ∈ Ik.

Thus SI(ν∗) = SI(k), i.e., the counts of ν∗ for the categorization I are
equal to those of k. The iterative proportional fitting algorithm starts
with ν0 = (1, 1, . . . , 1). Then

νk = IP(νk−1 ; Ik), k = 1, 2, . . . ,K. (3.4.1)

Next, set ν0 to be the final vector νK, and repeat (3.4.1). This process
is repeated until the applications of (3.4.1) no longer change the vector
appreciably. Let ν be the final vector. Then the MLE’s are given by

ka = npa(θ̂), a ∈ Am.

If one is interested in the MLE θ̂ and the Fisher information, one has
to perform further computations. However, if only testing is of interest,
the LRS’s can be found directly from the ν’s. See (3.1.7).

3.5 The EM algorithm

Dempster, Laird, and Rubin (1977) present the general EM algorithm is.
Here we will give just the relevant results for fitting latent class models.
See Croon (1989), too. We assume we have a mixture of exponential
family models, that is, there are G groups in the population, and

f(a ; θ1, . . . ,θK, q) =
G∑
g=1

P[Og]× P[W = a |Og]

= f0(a)

G∑
g=1

qge
θ ′gτg(a)−ψg(θg),

where

P[Og] = qg (Og means “Observation is in group g”)

and
P[W = a |Og] = f0(a)e

θ ′gτg(a)−ψg(θg).

The likelihood function is

L(θ1, . . . ,θk, q ; k) =
∏
a∈Am

f0(a) G∑
g=1

qge
θ ′gτg(a)−ψg(θg)

ka . (3.5.1)
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Because the summation is inside the product, the nice summing which
occurs in the exponent of an exponential family does not occur here.
The number of parameters can be large, pG + G − 1 if each θg is of
dimension p, and the formulas for the first and second derivatives can
be reasonably complicated.

The idea of the algorithm is that if we knew which observations
were from which group, we could just fit the individual models using
maximum likelihood (the “M” step). On the other hand, if we knew the
values of the parameters θk, we could estimate how many observations
come from each group (the “E” step). Details follow.

For a ∈ Am and g = 1, . . . ,G, let

h(g ; a) = P[Og |W = a]

=
P[W = a |Og]P[Og]∑G
l=1 P[W = a |Ol]P[Ol]

=
eθ
′
gτg(a)−ψg(θg)qg∑G

l=1 e
θ ′lτl(a)−ψl(θl)ql

. (3.5.2)

Now perform the steps:

0. Guess values of the θg’s and q.

1. (E) Use (3.5.2) to estimate h(g ; a) for all g = 1, . . . ,G and a from
the current estimates of the θg’s and q.

2. (M) For each g, find the new estimate of θg by using the MLE
from the gth exponential family model with sufficient statistic

Sg =

n∑
i=1

h(g ; wi)τg(wi)

=
∑
a∈Am

h(g ; a)kaτg(a).

This is like the usual sufficient statistic, but the observations are
weighted by the probability they are in the particular group.

3. Find the new estimate of q by using

qg = P[Og] =
∑
a∈Am

P[Og |W = a]P[W = a] ≈
∑
a∈Am

h(g ; a)
ka

n
.

4. Check (3.5.1) (or its log) using the current values of the parameters.
If it is high enough, stop. Otherwise, go back to step 1 with the
new estimates.
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Each iteration produces a value of the likelihood. These values will
increase, meaning each new set of estimates is more likely than the
previous. One stops in step 4 if the increase is small enough. It can
happen that the increases are small, but do not decrease very quickly.
The algorithm may have to be repeated many (200, 500, . . . ) times.
Thus it is valuable when the individual steps are relatively easy, while a
full-blown Newton-Raphson is very difficult. One of the most attractive
properties of the EM algorithm is that it is reasonably easy to program.

3.6 Approximation for Thurstonian models

In order to find MLE’s in a Thurstonian model, one must be able to find
the probability for each particular ordering,

P[Zx1 < · · · < Zxm ], x ∈ Lm.

This probability in principle requires an m-fold integration, although
by subtraction one can reduce it to an (m− 1)-fold integral. The only
distribution for which these probabilities can be obtained easily is the
Gumbel distribution as in Section 2.2. In particular, the normal presents
a rather daunting problem. There are algorithms for such normal in-
tegrals. The length of time it takes to perform the integrals can prove
prohibitive if m is at all large (10?).

An alternative estimation scheme, which is not equivalent to MLE,
uses only the paired-comparison data. For a sample, let Nlilj be the
number of observations in which object li is preferred to object lj. Then
for a Thurstonian model (1.4.2), from (2.2.4) we have that

E

[
Nlilj
n

]
= D(−(µli − µlj)),

where D is the distribution function of U1 −U2, U1 and U2 being iid
with density g. Critchlow et al. (1991) note that therefore

E

[
D−1

(
Nlilj
n

)]
≈ −(µli − µlj) (3.6.1)

and the µli ’s can be estimated directly from the statistics in the expec-
tation in (3.6.1).

Let KP be the
(
m
2
)
× 1 vector of Nlilj ’s for i < j, U be the corre-

sponding vector of D−1(Nlilj/n)’s, δ be the corresponding vector of
µli − µlj ’s, and D(−δ) the vector of D(−(µli − µlj))’s. The central limit
theorem shows that

√
n

(
KP

n
−D(−δ)

)
−→ N(0,Ω(µ))
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for some covariance matrix Ω to be given below. The ∆-method then
can be used to show that, as long as D has a continuous derivative d,
√
n(U + δ) −→ N(0,Σ(µ)); Σ(µ) = Diag(1/d(δ))Ω(µ)Diag(1/d(δ)),

(3.6.2)
where Diag(1/d(δ)) is the diagonal matrix with diagonal elements

1/d(−(µli − µlj)).

Now (3.6.2) can be used to set up a normal linear model which ap-
proximates the distribution of U :

U ≈Xµ+E ; E ∼ N(0, (1/n)Σ(µ)),

where µ = (µl1 , . . . ,µlm)
′, and X is a

(
m
2
)
×m matrix of 0’s and ±1’s

representing the differences. E.g., the matrix for m = 4 is next.

Pair ij X − matrix
12 −1 1 0 0
13 −1 0 1 0
14 −1 0 0 1
23 0 −1 1 0
24 0 −1 0 1
34 0 0 −1 1

Now estimates of µ can be found using least squares or weighted
least squares. The matrix X is not of full rank since the columns sum
to 0. This property is due to the indeterminacy of the means µli in
that adding the same constant to all gives exactly the same model. For
estimation purposes one must place a constraint on the parameters. The
easiest is to set µlm = 0, so that the final column in X can be dropped.
Let µ∗ = (µl1 , . . . ,µlm−1) and X∗ be X without the final column. Then
the unweighted estimate of µ is

µ̂∗ = (X∗ ′X∗)−1X∗ ′U .

It is consistent, but not necessarily very efficient. Note that computa-
tionally this estimate is easy as long as the D function can be inverted.
The estimate can be improved by using the weighted least squares esti-
mate; however, the weights depend on Σ(µ), which is a function of the
unknown µ. Iteratively reweighted least squares (IRWLS) is appropri-
ate. An initial estimate µ0 is needed, say from unweighted least squares,
or just µ0 = 0. Then µi is obtained from µi−1 by setting

µ∗i = (X∗ ′Σ(µi−1)
−1X∗)−1X∗ ′Σ(µi−1)

−1U . (3.6.3)
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Objects Covariance
r, s, t,u all distinct 0

r = t, s 6= u P[U1 −U2 < −δrs & U1 −U3 < −δru] − prspru
r 6= t, s = u P[U1 −U3 < −δrs & U2 −U3 < −δts] − prspts
r 6= u, s = t P[U1 −U2 < −δrs & U2 −U3 < −δsu] − prspsu
r = t, s = u prs(1 − prs)

Table 3.1: Covariances (3.6.4) for paired comparisons in the Thurstonian
model.

Equation (3.6.3) is iterated until the estimates no longer change much.
Then the final value is µ̂. The approximation to the distribution of µ̂∗ is

µ̂∗ ≈ N(µ∗, (1/n)(X∗ ′Σ(µ̂)−1X∗)−1.

The iteratively reweighted least squares estimate should be better
than the unweighted version, but may not be as efficient as the MLE.
The reason is that the MLE uses all the information in the rankings,
while the IRWLS estimate only uses the paired comparison data. It is
an open problem exactly how much efficiency is lost.

3.6.1 The covariance matrices Ω and Σ

The matrix Ω contains the variances and covariances of indicator vari-
ables of paired comparisons, i.e., the (rs, tu)th element is

Cov(I[Zr < Zs], I[Zt < Zu]), (3.6.4)

for not necessarily distinct objects r, s, t,u. The covariances differ de-
pending on which objects among r, s, t,u are the same. Table 3.1 gives
the necessary cases, where

prs = P[Zr < Zs] = P[r is preferred to s] = D(−δrs); δrs = µr − µs.
(3.6.5)

The U1,U2 and U3 are independent with density g. The probabilities
for the normal and Gumbel distributions are next.

Normal. Now the Ui’s are iid N(0, 1), so that we need univariate and
bivariate normal probabilities. In (3.6.5), D is the N(0, 2) distribution,
hence D(−δrs) = Φ(−δrs/

√
2), where Φ is the N(0,1) distribution func-

tion. For a bivariate normal (Z1,Z2) with means 0, variances 1, and
correlation ρ, let BVN(z1, z2 ; ρ) denote P[Z1 6 z1,Z2 6 z2]. For the
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”r = t, s 6= u” probabilities, we have that (U1 −U2,U1 −U3) is bivariate
normal with means 0, variances 2, and correlation 1

2 . Hence

P[U1 −U2 < −δrs & U1 −U3 < −δru] = BVN(− 1√
2
δrs,− 1√

2
δru ; 1

2 ).

In the same way, for r 6= t, s = u,

P[U1 −U3 < −δrs & U2 −U3 < −δts] = BVN(− 1√
2
δrs,− 1√

2
δts ; 1

2 ).

For r 6= u, s = t, the correlation between U1 −U2 and U2 −U3 is − 1
2 , so

that

P[U1 −U2 < −δrs & U2 −U3 < −δsu] = BVN(− 1√
2
δrs,− 1√

2
δsu ; − 1

2 ).

It is fairly easy to find computer routines which will calculate such bi-
variate normal probabilities.

Gumbel. As in (2.2.5), prs = us/(ur + us), where ul = eµl . Thus

P[r is chosen as the worst from S] = QS(r) =
ur∑
s∈S us

.

Bivariate probabilities can be found by using Lemma 2.3.1, which shows
the ranking model derived from the Gumbel model is the same as the
backwards Luce model. The probabilities for the table are for r = t, s 6=
u,

P[Zr < Zs & Zr < Zt] = P[X = (r, s, t) or (r, t, s)]
= Q{r,s,t}(t)Q{r,s}(s) +Q{r,s,t}(s)Qr,t(t)

=
utus

ur + us + ut
×
(

1
ur + us

+
1

ur + ut

)
;

for r 6= t, s = u,

P[Zr < Zs & Zt < Zs] = Q{r,s,t}(s) =
us

ur + us + ut
;

and for r 6= u, s = t,

P[Zr < Zs & Zs < Zt] = P[X = (r, s, t)] =
ut

ur + us + ut
× us

ur + us
.

These probabilities are easy to compute. The ones for the forwards Luce
model, in which the −Zr’s are Gumbel, are similar.

Other Thurstone models may or may not be easy. For example, if the
g’s are exponential or uniform, the bivariate probabilities can written in
closed form. If g is logistic or Student’s t, they cannot be, and in fact
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need trivariate computations. If we believe that all reasonable g’s yield
similar models, then the Gumbel model is the easiest to work with. Its
advantage may disappear, however, if the Zi’s are not independent or
homoscedastic.

To find the Σ from Ω, all that is needed is the d(−δrs)’s. In the
normal case, D is N(0, 2), so that d(−δrs) = e−δ

2
rs/4/(2

√
π). For the

Gumbel, d(−δrs) = eδrs/(1 + eδrs)2.

3.7 φ models

The φmodels include Mallows’ φmodel, the φ component models, and
the φ orthogonal contrast models. They are all Babington Smith models
and regular exponential family models, so the techniques in Section 3
work well. As mentioned, if m is large, the general Babington Smith
model can be challenging to fit computationally since the normalizing
constant (1.5.1) in the density (1.5.2) is the product of m! terms, each a
sum of

(
m
2
)

terms. The φ models greatly simplify the calculations, in
part because the natural sufficient statistics are independent.

The most general of the φmodels is the orthogonal contrast model in
Section 1.6.3. Let (C1, . . . ,Cq) be a set of orthogonal contrasts. For the
φmodel (1.6.9), let f0(y) = 1/m! in (3.2.1), so that f0 is the Uniform(Pm)
density. Then the ψ function is

ψ(θ) = log

 1
m!

∑
y∈Pm

e
∑q
i=1 θid(Ci(y))


= log(E[e

∑
θid(Ci(Y ))]) ; Y ∼ Uniform(Pm). (3.7.1)

By Lemma 1.6.5, the expectation can be written as a product of expecta-
tions, one for each Ci, since under Uniform(Pm) the Ci’s are indepen-
dent. Thus

ψ(θ) =

q∑
i=1

log(E[eθid(Ci(y))])) ≡
q∑
i=1

ψ(θi ; Ci), (3.7.2)

that is, the ψ is a sum of terms, one for each contrast Ci. Thus we need
only the expectation for each individual contrast. Note that Lemma
1.6.5 also says that the Ci are uniform. Letting Ci be the set of possible
values that contrast Ci can have,

ψ(θi ; Ci) = log
(
E[eθid(Ci(Y ))]

)
= log

 1
#Ci

∑
Ci∈Ci

eθid(Ci)

 . (3.7.3)
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The summations in (3.7.3) are over reasonably small sets. For example,
when m = 10 the number of elements in Pm in (3.7.1) is 3,628,800. On
the other hand, the largest #Ci could possibly be is C(10, 5) = 252, and
I conjecture that the largest

∑q
i=1 #Ci could be is 292. It turns out that

the calculations can be made even simpler.
First consider the φ component model (1.6.6). This is an orthogonal

contrast model with Ci = ({li}, {li+1, . . . , lm}), so that d(Ci(y)) = yi− 1
by (1.6.8). Under Uniform(Pm), then, d(Ci(y)) is Uniform({0, 1, . . . ,m−
i}, so that #Ci = m− i+ 1, and (3.7.3) becomes

ψ(θi ; ({li}, {li+1, . . . , lm}) = log

 1
m− i+ 1

m−i∑
j=0

ejθi


= log

(
1

m− i+ 1
1 − e(m−i+1)θi

1 − eθi

)
≡ φm−i+1(θi), (3.7.4)

where
φk(γ) = log(1 − ekγ) − log(1 − eγ) − log(k). (3.7.5)

Thus by (3.7.2), the ψ for the φ component model is

ψφ−component(θ) =

m−1∑
i=1

φm−i+1(θi). (3.7.6)

As noted below (1.6.6), Mallows’ φ model (1.5.5) can be obtained
from the φ component model by equating the θi’s. Thus from (3.7.6),
the ψ for Mallows’ φ model is

ψm(θ) ≡
m−1∑
i=1

φm−i+1(θ). (3.7.7)

Now there is a trick to obtain the (3.7.3) for any contrast C = (I, J).
Let I = #I and J = #J, and relabel the objects so that C = ({l1, . . . , lI},
{lI+1, . . ., lI+J}). Create the new contrasts

Ci = ({li}, {li+1, . . . , lI}) for i = 1, . . . , I− 1,

and
CI+j = ({lI+j}, {lI+j+1, . . . , lI+J}) for j = 1, . . . , J− 1.

Then (C,C1, . . . ,CI−1,CI+1, . . . ,CI+J−1) is a set of orthogonal con-
trasts. Consider the φ model with all θi’s equal to θ. It can be shown
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to be Mallows’ φ model (with I+ J objects), which has ψ being ψI+J(θ)
of (3.7.7). Since we know from (3.7.4) the ψ’s for contrasts like the Ci’s
here, we have immediately that

ψI+J(θ) = ψ(θ ; C) +

I−1∑
i=1

φI−i+1(θ) +

J−1∑
j=1

φJ−j+1(θ). (3.7.8)

Using (3.7.7) twice in (3.7.8), we have that

ψ(θ ; C) = ψI+J(θ) −ψI(θ) −ψJ(θ).

The above can make finding MLE’s quite easy. The loglikelihood
function (3.2.3) is now

l(θ ; k) =
q∑
i=1

θi
 n∑
j=1

d(Ci(yj))

−nψ(θi ; Ci)

+C.

Thus the maximum over θ can be found by maximizing each term over
θi, which is a univariate maximization. Then Σ, hence În and I1, are
diagonal. Note that we have changed a p-dimensional maximization of
a sum of m! terms into p one-dimensional maximizations of sums of at
most m terms.



Chapter 4

Ties, Incomplete Rankings, and
Partial Rankings

4.1 Introduction

There are many ways in which a judge could partially rank a set of
objects. Some examples:

Example 1: APA election

In the American Psychological Association 1980 presidential election,
people were supposed to rank the five candidates from 1 to 5. A total
of 5738 people ranked all five, but 5141 only gave their top candidate,
2462 gave their first and second choice, and 2108 gave their top three.

Example 2: Desirable qualities

In the NORC General Social Survey, one question presented 13 desirable
qualities for a child to have. The respondent was to give the top three
choices, unordered, the bottom three choices, unordered, the top choice
of the top three, and the bottom choice of the bottom three. Thus the
objects are separated into five groups: #1, #2&3, #5-10, #11&12, and #13.
See Alwin and Jackson (1982).

57
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Example 3: Soft drinks

Böckenholt (1992) presents a study in which judges were to rank eight
soft drinks. However, instead of ranking all eight together, each judge
was presented with two groups of four soft drinks. The judges only
ranked the drinks within each group of drinks so that preferences be-
tween drinks which were in two different groups were not obtained.
The groups of four were chosen according to an incomplete block de-
sign. For example, some people were asked to rank Coke, Pepsi, Diet
Coke and Diet Pepsi, then to rank 7-up, Sprite, Diet 7-up and Diet Sprite.
The purpose of using blocks of four was to make ranking easier, as well
as to reduce the number of possible rankings from 8! to 4!.

Example 4: Sports voting

In sports, there are often many judges who must give their top choices
out of a large number. For example, in the college football and basket-
ball polls, coaches give their top 20 (?) out of the hundreds of teams. In
choosing the Most Valuable Player or Cy Young Award winner in base-
ball, or the Heisman Trophy winner in college football, the judges give
their top k choices out of the hundreds or thousands of players eligible.

Example 5: Board candidates

The Mayor of a large Midwestern city asked a blue-ribbon committee
of 13 people to interview and rank 10 candidates for the Board of Com-
missions. The Mayor would then choose the top three for the Board.
Since a chosen candidate might turn down the appointment, it was nec-
essary to do more than just find the top three. After the interviews,
the members of the committee presented their assessments of the can-
didates in the form of rankings, but with ties. The pattern of ties varied
with the member. Some examples of the rankings: (1, 1, 1, 1, 2, 2, 2, 2, 3),
(4, 1, 3, 6, 2, 7, 5, 8, 9), and (2, 1, 2, 3, 2, 3, 4, 5, 6). (One candidate was so
bad that he is being ignored.) The first judge separated the candidates
into the top four, next four, and last, while the second gave a complete
ranking, and the third gave the top, next three, next two, and then sev-
enth, eighth and ninth.

Example 6: Draft lottery

In the 1970 draft lottery, numbers from 1 to 366 were randomly as-
signed to the days of the year. Thus there are two vectors x and y
in Pm, where x = (1, 2, . . . , 366) indicates the days of the year, and
y = (305, 159, . . . , 100) were the assigned numbers. Analysis of the
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data and the randomization procedure suggests that days from ear-
lier months tended to have higher lottery numbers than later months,
but that there are no consistent trends within months. Thus a possible
model for the procedure could be based on the distance between the
y and a vector in which days within months are tied, i.e., the vector
z ≡ (1, 1, . . . , 1, 2, 2, . . . , 2, . . . .., 12, 12, . . . , 12), where there are 31 1’s, 29
2’s, etc. Note that m = 366 and n = 1, so that there is little chance of
fitting many of the usual models.

Example 7: Educational testing

In educational testing, such as GRE’s and ACT’s, one finds data consist-
ing of the performance of m test takers on a test with n questions. The
objective may be to rank the examinees, or to analyze the properties of
the individual questions. Looking at this from a ranking point of view,
one has that each question is a ”judge” which ranks the examinees (who
in this case are, unfortunately, ”objects”). Typically, each question can
only give a crude ranking, especially if there is only right and wrong
and no partial credit, in which case each question can only divide the
examinees into a top set and bottom set.

Example 3 is of a different type than the other examples, where
there are no ties, but many comparisons are not made. In the others,
all objects are compared, but in some cases two or more objects are
equally preferred. One can also imagine mixtures of situations, such as
if someone preferred A to B and B to D and C to D, but did not compare
C to either A or B. Thus C cannot be tied with A nor B.

The next three sections contain general approaches to modeling rank
data with incomplete rankings. An incomplete ranking has to be rep-
resented somehow. In any specific case, it should be generally easy to
invent a reasonable representation. We will represent a generic incom-
plete ranking by ”w,” which will have to be given explicitly in special
cases, but it general will be left vague. Section 4.5 discusses Babington
Smith.

4.2 The censored data approach

For any incomplete rankingw, there are a number of complete rankings
y ∈ Pm which are consistent with w. For example, the rank vector with
ties, (2, 1, 3, 2), is consistent with (2, 1, 4, 3) and (3, 1, 4, 2). The set of
partial rankings: ”A preferred to B” and ”C preferred to D” is consistent
with the following rankings of (A, B, C, D):

(1, 2, 3, 4), (1, 3, 2, 4), (1, 4, 2, 3), (2, 3, 1, 4), (2, 4, 1, 3), and (3, 4, 1, 2).
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The censored data approach assumes that there is a latent complete
ranking y, but for some reason it is only partially observed. It may be
that one has a complete ranking, but is only asked for the top three
choices or to make a few paired comparisons; or one does not have
the time to perform a detailed ranking; or ranks are based on some
real-valued variables, but roundoff error creates some ties. The model
assumes that there are two random quantities: Y , the complete rank
vector, and ∆, which specifies the pattern of ties or incomplete rankings.
Then the observed incomplete ranking is a function of Y and ∆,

W = g(Y ; ∆).

The model makes the following assumptions:

1. Y ∼ fθ , θ ∈ Θ, for some density fθ ;

2. ∆ is independent of Y ;

3. The distribution of ∆ does not depend on θ.

In Examples 2, 3, 4, and 6, the pattern of ties or incomplete rankings
is fixed by the experimenter, hence ∆ satisfies Assumptions 2 and 3 au-
tomatically. In Examples 1, 5, and 7, each judge decides on what pattern
of ties to present, hence Assumption 2 in particular may be suspect. In
Example 1, in fact, one can prove statistically that Assumption 2 fails.

One observes W , and from that can infer ∆, but is generally only in-
terested in θ. We need the distribution of W , but note that by Assump-
tion 3, ∆ is an ancillary statistic. (An ancillary statistic is one whose
distribution does not depend on θ.) Thus instead of the full likelihood
for W , we will look at just the partial likelihood, which is the likelihood
of W conditional on ∆. Now

hθ(w | δ) = Pθ[W = w |∆ = δ]

= Pθ[W = w & ∆ = δ]/Pθ[∆ = δ]

=
∑

{y |g(y ;δ)=w}

Pθ[Y = y & ∆ = δ]/Pθ[∆ = δ]

=
∑

{y |g(y ;δ)=w}

Pθ[Y = y]Pθ[∆ = δ]/Pθ[∆ = δ]

=
∑

{y |g(y ;δ)=w}

Pθ[Y = y].

That is, the conditional likelihood for W is just the sum of the like-
lihoods for the Y ’s that could have produced W . Given a sample of
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independent W1, . . . ,Wn, the joint conditional likelihood is

n∏
i=1

hθ(wi | δi). (4.2.1)

In the next three subsections, we will present applications of this
approach to specific models and types of incomplete data which yield
compact densities hθ . For other models, the calculations may or may
not be difficult, but in principle any model can be extended. Often, the
EM algorithm can be of use for fitting, where the E-step estimates what
the statistics would be if the rankings were complete.

4.2.1 Thurstonian models

In general, the density (4.2.1) is very complicated since each hθ term
is a sum of several multidimensional integrals. However, if the incom-
plete rankings are constituted as in Example 3, then each hθ is just the
product of the Thurstonian ranking probabilities of the smaller groups
of objects. That is, suppose one is to rank {A, B, C, D} and {E, F, G, H}.
Then, e.g., as long as the Zl’s corresponding to the two sets of objects
are independent,

P[(1, 3, 4, 2) & (3, 2, 4, 1)]
= P[ZA < ZD < ZB < ZC]P[ZH < ZF < ZE < ZG].

The pairwise analysis can also be performed, but one must modify
the covariance matrices Ω and Σ appropriately.

4.2.2 Thurstone-Gumbel-Plackett-Luce

Suppose the forward Plackett model holds, and one only ranks the top q
choices. Silverberg (1980) calls such partial rankings ”q-permutations.”
Then

hθ(w) = vl1 ×
vl2

vl2 + · · ·+ vlm
× · · · ×

vlq
vlq + · · ·+ vlm

,

where the observed order of the top q choices is (l1, . . . , lq). A similar
formula works for the backwards Plackett model if one only ranks the
bottom q objects. Note that q can be different for different judges.

4.2.3 Orthogonal contrast φ models

For these models, we assume the vector W consists of possibly tied
ranks, but all objects are compared. First, a definition for patterns of
ties must be made.
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Definition 4.2.1. A pattern of ties is a partition s ≡ (s1, s2, . . . , st) of the
integer m. (That is, the si’s are positive integers which sum to m.) Such
a pattern describes a ranking with ties in which the objects are divided
into t groups, with s1 objects in the top group, s2 in the second group,
. . . , and st in the bottom group.

Thus if m = 5 and one gives only the top choice, the pattern is (1,4).
In Example 2, the pattern is (1, 2, 7, 2, 1). If the ranking is complete, the
pattern is (1, 1, . . . , 1), with m 1’s. A ranking with ties, w, that has pat-
tern s will be given as an m× 1 vector with si values being the integer
i, i = 1, . . . , t. Example 5 has such vectors corresponding to patterns
(4, 4, 1), (1, 1, 1, 1, 1, 1, 1, 1, 1), and (1, 3, 3, 1, 1, 1), respectively. Note that
a complete ranking vector y ∈ Pm is consistent with the w if and only
if dK(w,y) = 0, where dK is Kendall’s τ distance in (1.8.3).

Now suppose the underlying vector Y is distributed according to
an orthogonal contrast φ model. The function hθ has a fairly nice form.
First, define the ”d” of a contrast C ≡ (I1, I2) at w by

d(C(w)) =
∑
i∈I1

∑
j∈I2

I[wi > wj].

This definition is actually the same as for a complete ranking y, except
that now the indicator function will be 0 if either object i is preferred to
object j or they are tied. From Marden and Chung (1991), the constant
in the exponent of the density for this contrast with parameter θ is

ψ(θ ; C,w) = ψ#I1+#I2(θi) −

2∑
j=1

ψ#Ij(θ)

−

t∑
k=1

ψsk(θ) +

2∑
j=1

tj∑
k=1

ψujk(θ), (4.2.2)

where s = (s1, . . . , st) is the pattern of ties for the vector w restricted to
the objects in I1 ∩ I2, and uj = (uj1, . . . ,ujtj) is that for w restricted to
the objects in Ij (j = 1, 2). Although the ψ looks a bit formidable, it is
actually easy to compute since it is just a linear combination of the φ’s in
(3.7.5). The right-hand side of (4.2.2) is analogous to inclusion-exclusion
formulas.

For a general orthogonal contrast φ model with contrasts (C1, . . .,
Cq), the density is then

hθ(w) = f∗0(w)e
∑q
i=1(θid(Ci(w))−ψ(θi ;Ci,w)), (4.2.3)
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where f∗0 is the uniform distribution on W(s), the space of tied rank-
ings with pattern s. Mallows φ model is a special case of the orthogo-
nal contrast φ models, so the corresponding model with ties should be
straightforward from (4.2.3). It is. The density is

hθ(w) = f∗0(w)eθd(w,µ)−ψ(θ ;s),

where now

ψ(θ ; s) = ψm(θ) −

t∑
j=1

ψsj(θ).

4.3 Distance models

Critchlow (1985) has a general method for extending metrics on Pm to
metrics on spaces of tied rankings. See also Diaconis (1988). He uses
the Hausdorff metric. The model assumes all the observations have the
same pattern of ties. For any metric d on Pm, the Hausdorff extension
to a metric d∗ on W(s) is defined by

d∗(w,v) ≡ max{ max
{x cw w}

min
{y cw v}

d(x,y), max
{y cw v}

min
{x cw w}

d(x,y)},

where v and w ∈ W(s), x and y ∈ Pm, and “cw” means ”is consistent
with.” Now d∗ can be used to define a distance model on W(s), where
the modal ranking is one with ties in the pattern s.

4.4 Exponential family models

The idea here is the same as for complete rankings. First one must
decide on what the sample space W should be, and then must de-
rive the null density f∗0(w). In the complete ranking case, or when
the rankings have a fixed pattern of ties, we had the uniform distri-
bution. With an arbitrary set of incomplete rankings, the uniform dis-
tribution may not be appropriate. For example, suppose m = 3 and
W = {(1, 2, 2), (2, 1, 2), (3, 2, 1), (2, 3, 1)}. Here, the first two elements are
consistent with two complete rankings, while the last two are consistent
only with themselves. Thus rather than giving each element probability
1
4 , the distribution induced by the uniform on Pm is ( 1

3 , 1
3 , 1

6 , 1
6 ).

Once W and f∗0 are set, all the exponential model needs is a set of
sufficient statistics, t = (t1, . . . , tp). The density is then as in (3.2.1), i.e.,

hθ(w) = f∗0(w)eθ
′t(w)−ψ(θ).

As before, with a sample from W, S is the vector of sums of t.
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Silverberg (1980) describes his first-order model for q-permutations,
which are rankings with pattern of ties s = (1, 2, . . . ,q,m− q), to have
W = W(s), f0(w) be a constant, and sufficient statistics for a sample
being

Sij ≡ #{Object li is ranked j}, i = 1, . . . ,m, j = 1, . . . ,q.

Second-order models depend on the Sij’s as well as the numbers of
times each pair of objects is ranked j1 and j2 for 1 6 j1, j2 6 q, and
similarly for higher-(but-no-higher-than-q-)order models.

An analog of the Bradley-Terry model would again restrict to W(s)
and use the average ranks as sufficient statistics, but one must de-
cide how to average ranks with ties. The most common way is to use
midranks, which for tied objects uses for their ranks the average of the
ranks they would have if there were no ties. More specifically,

midrank(w) ≡ Average{y’s consistent with w}.

For example, midrank((2, 1, 2, 2, 3)) = (3, 1, 3, 3, 5).

4.5 Babington Smith

There are several ways one might imagine extending Babington Smith
models to incomplete rankings. One way is to use the censored data
approach as in Section 2. That may be a bit suspect, however. Suppose
the observed w is (2, 1, 2, 2, 3). The censored data model posits that first
the judge made all 10 paired comparisons, perhaps obtaining a complete
ranking, perhaps not. If not, the judge repeated the paired comparisons.
When a complete ranking was finally found, the judge then ignored
the A-C-D comparisons. Why go to all the bother of making sure all
comparisons are consistent when some are ignored?

Another approach is to assume for each pair three possibilities: pre-
fer the first, prefer the second, it’s a tie. This model is Davidson’s (1970)
for paired comparisons. Thus each pair of objects will have a little triple
of probabilities attached. The ranking proceeds by making all compar-
isons until a consistent ranking, possibly with ties, results.

If the usual Babington Smith experiment is performed but with only
a subset of the possible paired comparisons being made, incomplete
rankings are likely to result.
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